Journal of Quantitative Criminology

, Volume 7, Issue 1, pp 59–98 | Cite as

Survival analysis: A survey

  • Ching-Fan Chung
  • Peter Schmidt
  • Ana D. Witte
Methods Showcase


This paper is a survey of statistical methods used to analyze the length of time until a specified event occurs. These models have often been used to analyze the survival times (i.e., time until death) of medical patients, and so the term survival analysis is natural. In criminology, the main application of these models has been to analyze the time until recidivism, but many other applications are possible. The paper summarizes the statistical literature on survival analysis, and describes its applications in criminology. The methods are illustrated by an application to the prediction of time until recidivism for a sample of North Carolina prison releasees.

Key words

survival time survival analysis failure time proportional hazards model split population model recidivism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, C. W., Blumstein, A., and Schervish, M. (1990). Estimation of arrest careers using hierarchical stochastic models.J. Quant. Criminol. 6: 131–152.Google Scholar
  2. Amemiya, T. and Boskin, M. (1974). Regression analysis when the dependent variable is truncated normal, with an application to the duration of welfare dependency.Int. Ec. Rev. 20: 169–182.Google Scholar
  3. Barton, R. R., and Turnbull, B. W. (1981). A failure rate regression model for the study of recidivism. In Fox, J. A. (ed.),Models in Quantitative Criminology, Academic Press, New York.Google Scholar
  4. Berk, R. A., and Rauma, D. (1983). Capitalizing on random assignment to treatments: A regression-discontinuity evaluation of a crime-control program.J. Am. Stat. Assoc. 78: 21–27.Google Scholar
  5. Berk, R. A., and Sherman, L. W. (1988). Police responses to family violence incidents: An analysis of an experimental design with incomplete randomization.J. Am. Stat. Assoc. 83: 70–76.Google Scholar
  6. Bloom, H. S. (1979). Evaluating human service and correctional programs by modeling the timing of recidivism.Sociological Methods and Research 8: 179–208.Google Scholar
  7. Blumenthal, S., and Marcus, R. (1975). Estimating population size with exponential failure.J. Am. Stat. Assoc. 70: 913–922.Google Scholar
  8. Blumstein, A.,et al. (1986).Criminal Careers and “Career Criminals”, National Academy Press, Washington, D.C.Google Scholar
  9. Carr-Hill, G. A., and Carr-Hill, R. A. (1972). Reconviction as a process.Br. J. Criminol. 12: 35–43.Google Scholar
  10. Chamberlain, G. (1984). Panel data. In Griliches, Z., and Intriligator, M. (eds.),Handbook of Econometrics, Vol. 2, North-Holland, Amsterdam.Google Scholar
  11. Cox, D. R. (1972). Regression models and life tables.J. Roy. Stat. Soc. Ser. B 34: 187–220.Google Scholar
  12. Cox, D. R. (1975). Partial likelihood.Biometrika 62: 276–296.Google Scholar
  13. Cox, D. R., and Oates, D. (1984).Analysis of Survival Data, Chapman and Hall, London.Google Scholar
  14. Elandt-Johnson, R. C., and Johnson, N. L. (1980).Survival Models and Data Analysis, Wiley, New York.Google Scholar
  15. Farrington, D. P. (1985). Predicting self reported and official delinquency. In Farrington, D. P. and Tarling R. (eds.),Prediction in Criminology, State University of New York Press, Albany.Google Scholar
  16. Harris, C. M., and Moitra, S. (1978). Improved statistical techniques for the measurement of recidivism.J. Res. Crime Delinq. 15: 194–213.Google Scholar
  17. Harris, C. M., Kaylan, A. R., and Maltz, M. D. (1981). Refinements in the statistics of recidivism measurement. In Fox, J. A. (ed.),Models in Quantitative Criminology, Academic Press, New York.Google Scholar
  18. Heckman, J. J., and Singer, B. (1982). Population heterogeneity in demographic models. In Land, K., and Rogers, A. (eds.),Multidimensional Mathematical Demography, Academic Press, New York.Google Scholar
  19. Heckman, J. J., and Singer, B. S. (1984). A method for minimizing the impact of distributional assumptions in econometric models for duration data.Econometrica 52: 271–320.Google Scholar
  20. Heckman, J. J., and Singer, B. S. (1985). Social science duration analysis. In Heckman, J. J., and Singer, B. S. (eds.),Longitudinal Analysis of Labor Market Data, Cambridge University Press, Cambridge, Chap. 2.Google Scholar
  21. Hoffman, P. B., and Stone-Meierhoefer, B. (1979). Post release arrest experiences of federal prisoners: A six-year follow-up.J. Crim. Just. 7: 193–216.Google Scholar
  22. Hsiao, C. (1986).Analysis of Panel Data, Cambridge University Press, Cambridge.Google Scholar
  23. Kalbfleisch, J. D., and Prentice, R. L. (1980).The Statistical Analysis of Failure Time Data, Wiley, New York.Google Scholar
  24. Kendall, M. G., and Stuart, A. (1973).The Advanced Theory of Statistics, Vol. 2, 3rd ed., Hafner, New York.Google Scholar
  25. Kiefer, N. M. (1988). Economic duration data and hazard functions,J. Econ. Lit. 26: 646–679.Google Scholar
  26. Kitchener, H., Schmidt, A. K., and Glaser, D. (1977). How persistent is post-prison success?Fed. Protect. 41: 9–15.Google Scholar
  27. Lattimore, P. K., Witte, A. D., and Baker, J. R. (1990). Experimental assessment of the effect of vocational training on youthful property offenders.Eval. Rev. 14: 115–143.Google Scholar
  28. Lawless, J. F. (1982).Statistical Models and Methods for Lifetime Data, Wiley, New York.Google Scholar
  29. Linster, R. L., and Patterson, E. B. (1987). Probability models of recidivism: An exploration. Discussion Paper 3-87, National Institute of Justice, Washington, D.C.Google Scholar
  30. Lloyd, M. R., and Joe, G. W. (1989). Recidivism comparison across groups: Methods of estimation and tests of significance for recidivism rates and asymptotes.Eval. Q. 3:105–111.Google Scholar
  31. Magidson, J. (1987). Analytic techniques useful in the evaluation of preventive interventions. InPreventing Mental Disorders: A Research Perspective, ADAMHA Monograph.Google Scholar
  32. Maltz, M. D. (1984).Recidivism, Academic Press, Orlando, Fla.Google Scholar
  33. Maltz, M. D., and McCleary, R. (1977). The mathematics of behavioral change: Recidivism and construct validity.Eval. Q. 1: 421–438.Google Scholar
  34. Maltz, M. D., and McCleary, R. (1978). Comments on “Stability of Parameter Estimates in the Split Population Exponential Distribution”.Eval. Q. 2: 650–654.Google Scholar
  35. Maltz, M. D., McCleary, R., and Pollock, S. M. (1979). Recidivism and likelihood functions: A reply to Stollmack.Eval. Q. 3: 124–131.Google Scholar
  36. Mendenhall, W., and Hader, R. J. (1958). Estimation of parameters of mixed exponentially distributed failure time distributions from censored life data.Biometrika 45: 504–520.Google Scholar
  37. Miley, A. D. (1978). Stability of parameter estimates in the split population exponential distribution.Eval. Q. 2: 646–649.Google Scholar
  38. Partanen, J. (1969). On waiting time distributions.Acta Sociol. 12: 132–143.Google Scholar
  39. Peto, R. (1972). Contribution to the discussion of paper by D. R. Cox.J. Roy. Stat. Soc. Ser. B 34: 472–475.Google Scholar
  40. Proschan, F. (1963). Theoretical explanation of observed decreasing failure rate.Technometrics 5: 375–383.Google Scholar
  41. Rhodes, W. (1986). A survival model with dependent competing events and right-hand censoring: Probation and parole as an illustration.J. Quant. Criminol. 2: 113–137.Google Scholar
  42. Rhodes, W. (1989). The criminal career: Estimates of the duration and frequency of crime commission.J. Quant. Criminol. 5: 3–32.Google Scholar
  43. Schmidt, P., and Witte, A. D. (1979). An analysis of the type of criminal activity using the Logit model.J. Res. Crime Delinq. 16: 164–179.Google Scholar
  44. Schmidt, P., and Witte, A. D. (1984).An Economic Analysis of Crime and Justice: Theory, Methods, and Applications, Academic Press, Orlando, Fla.Google Scholar
  45. Schmidt, P., and Witte, A. D. (1988).Predicting Recidivism Using Survival Models, Springer-Verlag, New York.Google Scholar
  46. Schmidt, P., and Witte, A. D. (1989). Predicting criminal recidivism using “split population” survival time models.J. Economet. 40: 141–160.Google Scholar
  47. Sherman, L. W., and Berk, R. A. (1984). The specific deterrent effects of arrest for domestic assault.Am. Sociol. Rev. 49: 261–271.Google Scholar
  48. Smith, D. A., Visher, C. A., and Jarjoura, G. R. (1989). Dimensions of delinquency: Estimating the correlates of participation, frequency and persistence of delinquent behavior. Working paper, Institute of Criminal Justice and Criminology, University of Maryland, College Park.Google Scholar
  49. Stein, W. E., and Lloyd, M. R. (1981). The Maltz-McCleary model of recidivism: A reexamination.Eval. Rev. 5: 132–144.Google Scholar
  50. Stollmack, S. (1978). Comments on “The Mathematics of Behavioral Change”.Eval. Q. 3: 118–123.Google Scholar
  51. Stollmack, S., and Harris, C. M. (1974). Failure rate analysis applied to recidivism data.Oper. Res. 23: 1192–1205.Google Scholar
  52. Tauchen, H., Witte, A. D., and Griesinger, H. (1988). Deterrence, work and crime: Revisiting the issues with birth cohort data. NBER working paper no. 2508, Cambridge, Mass.Google Scholar
  53. Trussell, J., and Richards, T. (1985). Correcting for unmeasured heterogeneity in hazard models using the Heckman-Singer procedure. In Tuma, N. (ed.),Sociological Methodology 1985, Jossey-Bass, San Francisco.Google Scholar
  54. Tuma, N. B., Hannan, M. T., and Groeneveld, L. P. (1979). Dynamic analysis of event histories.Am. J. Sociol. 84: 820–854.Google Scholar
  55. Visher, C. A., and Linster, R. L. (1990). A survival model of pretrial failure.J. Quant. Criminol. 6: 153–184.Google Scholar
  56. Waldo, G. and Griswold, D. (1979). Issues in the measurement of recidivism. In Seechrest, L., White, S., and Brown, E. (eds.),The Rehabilitation of Criminal Offenders: Problems and Prospects, National Academy of Sciences, Washington, D.C.Google Scholar
  57. Wilkins, L. (1970). The Borstal Prediction Study. In Johnson, N., Savitz, L., and Wolfgang, M. (eds.),The Sociology of Punishment and Correction, 2nd ed. Wiley, New York.Google Scholar
  58. Witte, A. D., and Schmidt, P. (1977). An analysis of recidivism, using the truncated lognormal distribution.Appl. Stat. 26: 302–311.Google Scholar
  59. Witte, A. D.,et al. (1982). The effect of a less coercive internal prison environment and gradual reintegration on post-release prison performance: An evaluation of Morris' model of imprisonment as implemented at the Federal Correctional Institution at Butner, N.C., Report to the Federal Bureau of Prisons, Contract J100c-047.Google Scholar
  60. Yamaguchi, K. (1986). Alternative approaches to unobserved heterogeneity in the analysis of repeated events. In Tuma, N. (ed.),Sociological Methodology 1986, Jossey-Bass, San Francisco.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Ching-Fan Chung
    • 1
  • Peter Schmidt
    • 1
  • Ana D. Witte
    • 2
    • 3
  1. 1.Michigan State UniversityEast Lansing
  2. 2.Wellesley CollegeWellesley
  3. 3.NBERCambridge

Personalised recommendations