Skip to main content
Log in

Die stratiforme Sulfidlagerstätte Walchen, Steiermark, Österreich: Geochemie und Genese

The stratiform sulphide deposit at walchen, styria, austria: Geochemistry and genesis

  • Published:
Tschermaks mineralogische und petrographische Mitteilungen Aims and scope Submit manuscript

Zusammenfassung

Die Neubearbeitung derstratiformen Sulfidlagerstätte Walchen bei Öblarn, Steiermark, offen-bart eine eisenbetonte submarin-exhalative Metallkonzentration in einem vulkano-sedimentären Rahmen. Dieser liegt heute in Form metamorpher Gesteine der untersten Grünschieferfazies vor. Mineralchemische Untersuchungen zeigen, daß die ehemalige intensivste metamorphe Überprägung der Lagerstätte im Bereich von 450°–500°C oberhalb 4 kb stattgefunden hat. Metavulkanite, vertreten durch Grünschiefer, lassen alkalibasaltische Affinität erkennen. Die vulkano-tektonische Position der Lagerstätte ist in einem intrakontinentalen Riftsystem zu sehen.

Summary

The Walchen deposit consists of a 1–2 m thick layer of massive to disseminated pyrite-pyrrhotite-chalcopyrite ore with an average grade of 1% Cu. It has been mined intermittently in the past. The ore horizon occurs within sericitic and quartzitic phyllites which carry intercalations with significant carbonate, garnet and graphite contents. The succession is of lower Paleozoic age and forms part of the “Grauwackenzone”, a volcano-sedimentary unit which separates the Central Alps from the Northern Calcareous Alps.

The precursor rocks of the ore environment have been pelites and sandstones; greenschists occur in the hanging wall of the mineralization. Major and trace element analyses of greenschists reveal them as low-grade metamorphic equivalents of continental alkali basalts. Hydrothermal systems generated by volcanic activity were responsible for deposition of stratiform sulphides. The predominance of clastic sediments and the absence of stringer zones point towards a shallow depositional basin.

Microprobe analyses of garnets from the ore environment reveal an increase in spessartine contents from 7 mol% in phyllites to 20 mol% in the vicinity of the ore horizon. Similar data have been reported from other stratabound base metal deposits (Broken Hill, N.S.W.; Kreuzeck Mountains, Austria; Gamsberg, South Africa); the manganese concentrations represent “fossil” manganese haloes.

Pyrite carries minor Ni and Co (up to 0.03, respectively 0.3%), pyrrhotite averages 0.8% Ni and 0.1% Co, Fe-contents of sphalerite vary from 6.41–9.33%; Cd, In and Mn have not been recorded.

Garnet-biotite pairs suggest maximum metamorphic temperatures of 450°–500°C: pressures of 4 to 5 kb have been estimated. The Walchen deposit is interpreted as the product of submarine exhalative processes in an incipient rift. It was affected by prograde metamorphism during the Variscan orogeny, and by retrograde affects during a later event. Isochemical metamorphism resulted in the preservation of a primary manganese halo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Cipriani, C., Sassi, F., Scolari, A., 1971: Metamorphic white micas: Definition of paragenetic fields. SMPM51, 259–302.

    Google Scholar 

  • Colins, E., Hoschek, G., Mostler, H., 1980: Geologische Entwicklung und Metamorphose im Westabschnitt der Nördlichen Grauwackenzone unter besonderer Berücksichtigung der Metabasite. Mitt. österr. geol. Ges. 71/72, 343–378.

    Google Scholar 

  • Floyd, P. A., Winchester, J. A., 1978: Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chemical Geology21, 291–306.

    Google Scholar 

  • Fritsch, W., 1953: Die Grenze zwischen den Ennstaler Phylliten und den Wölzer Glimmerschiefern. Mitt. d. Mus. f. Bergbau, Geologie und Technik am Landesmuseum, „Joanneum”, Graz10, 13–19.

    Google Scholar 

  • Hey, M. H., 1954: A new review of the chlorites. Min. Mag.30, 277–292.

    Google Scholar 

  • Kolmer, H., 1978: Die Verteilung von Ti, Sr, Y und Zr in spilitischen Gesteinen der Steiermark. Mitt. naturwiss. Ver. Steiermark108, 31–43.

    Google Scholar 

  • Kuno, H., 1960: High-alumina basalt. J. Petrol.1, 121–145.

    Google Scholar 

  • Leake, B. E., 1964: The chemical distinction between ortho-and paraamphibolites. J. Petrol.5, 238–264

    Google Scholar 

  • — 1978: Nomenclature of amphiboles. Min. Mag.42, 533–563.

    Google Scholar 

  • Liou, J. G., Kuniyoski, S., Ito, K., 1974: Experimental studies of the phase relations between greenschist and amphibolite in a basaltic system. Amer. J. Sci.274, 613–632.

    Google Scholar 

  • Loeschke, J., 1975: Spurchelementdaten von paläozoischen Spiliten aus den Ostalpen und ihre Bedeutung für geotektonische Interpretationen. Geol. Rdsch.64, 62–74.

    Google Scholar 

  • McDonald, G. A., Katsura, T., 1964: Chemical composition of Hawaiian lavas. J. Petrol.5, 82–133.

    Google Scholar 

  • Pearce, J. A., Cann, J. R., 1973: Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet. Sci Letters19, 290–300.

    Google Scholar 

  • —,Norry, M. J., 1979: Petrogenetic implications of Ti, Zr, Y and Nb variation in volcanic rocks. Contr. Min. Petrol.69, 33–47.

    Google Scholar 

  • Perchuk, L. L., 1969: The effect of temperature and pressure on the equilibrium of natural iron-magnesium minerals. Int. Geology Review, Washington11, 875–901.

    Google Scholar 

  • Reimann, C., Stumpfl, E. F., 1981. Geochemical setting of strata-bound stibnite mineralization in the Kreuzeck Mountains, Austria. Trans. Inst. Min. Metal. (Section B)90, 126–132.

    Google Scholar 

  • Schäffer, U., Tarkian, M., 1984: Die Genese der stratiformen Sulfidlagerstätte Kalwang, der Grünsteinserie und einer assoziierten Banded Iron Formation. Tschermaks Min. Petr. Mitt.33, 169–186.

    Google Scholar 

  • Stanton, R. L., 1976: Fetrochemical studies of the ore environment at Broken Hill, New South Wales. 2. Regional metamorphism of banded iron formations and their immediate associates. Trans. Inst. Min. Metal. (Section B)85, 118–131.

    Google Scholar 

  • Stumpfl, E. F., 1979: Manganese haloes surrounding metamorphic base metal deposits. Min. Deposita,14, 207–217.

    Google Scholar 

  • — 1980: Reply to P. Lattanzi's discussion. Min. Deposita15, 247–249.

    Google Scholar 

  • Thompson, A. B., 1976: Mineral reactions in pelitic rocks. Part I and II. Amer. J. Sci.276, 401–454.

    Google Scholar 

  • Tollmann, A., 1977: Geologie von Österreich, Wien: F. Deuticke.

    Google Scholar 

  • Tröger, W. E., 1971: Optische Bestimmung der gesteinsbildenden Minerale, Bd. I., Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung.

    Google Scholar 

  • Unger, H.-J., 1968: Der Schwefel-und Kupferbergbau in der Walchen bei Öblam im Ennstal. Archiv f. Lagerstättenforschung in den Ostalpen, Bd 7. Leoben: Verlag Institut f. Mineralogie der Montanistischen Hochschule.

    Google Scholar 

  • Winkler, H. G. F., 1979: Petrogenesis of Metamorphic Rocks. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit 6 Abbildungen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlüter, J., Tarkian, M. & Stumpfl, E.F. Die stratiforme Sulfidlagerstätte Walchen, Steiermark, Österreich: Geochemie und Genese. TMPM Tschermaks Petr. Mitt. 33, 287–296 (1984). https://doi.org/10.1007/BF01082674

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01082674

Navigation