The vorton method

Theory and applications to fluid mechanics


After a general introduction to the vorton method, which is a vortex method resembling the 2-D point-vortex method, a set of equations describing dynamics of 3-D vortex singularities (vortons) is derived, avoiding the inconsistency in the derivation of other vorton equations which have been applied. Though inviscid, numerical simulations show reconnection phenomena.

This is a preview of subscription content, access via your institution.


  1. 1.

    M.I. Aksman, E.A. Novikov: 1988, "Reconnections of vortex filaments".Fluid Dyn. Res. 3, 239.

    Google Scholar 

  2. 2.

    T.Y. Hou, J. Lowengrub: 1990, "Convergence of the point vortex method for the 3-D Euler equations".Comm. Pure Appl. Math. 43, 965.

    Google Scholar 

  3. 3.

    M. Kiya, H. Ishii: 1991, "Deformation and splitting of pseudo-elliptical vortex rings". In:Advances in Turbulence 3 (eds. A.V. Johanson, P.H. Alfredsson), Springer, Heidelberg.

    Google Scholar 

  4. 4.

    S. Kuwabara: 1988, "Pseudo-canonical formulation of 3-dimensional vortex motion and vorton model analysis".Fluid Dyn. Res. 3, 163.

    Google Scholar 

  5. 5.

    E.A. Novikov: 1983, "Generalized dynamics of three-dimensional vortical singularities (vortons)".Sov. Phys. JETP 57, 566.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alkemade, A.J.Q., Nieuwstadt, F.T.M. & van Groesen, E. The vorton method. Appl. Sci. Res. 51, 3–7 (1993).

Download citation

Key words

  • vortex methods
  • vorton method
  • reconnection