The vorton method

Theory and applications to fluid mechanics

Abstract

After a general introduction to the vorton method, which is a vortex method resembling the 2-D point-vortex method, a set of equations describing dynamics of 3-D vortex singularities (vortons) is derived, avoiding the inconsistency in the derivation of other vorton equations which have been applied. Though inviscid, numerical simulations show reconnection phenomena.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.I. Aksman, E.A. Novikov: 1988, "Reconnections of vortex filaments".Fluid Dyn. Res. 3, 239.

    Google Scholar 

  2. 2.

    T.Y. Hou, J. Lowengrub: 1990, "Convergence of the point vortex method for the 3-D Euler equations".Comm. Pure Appl. Math. 43, 965.

    Google Scholar 

  3. 3.

    M. Kiya, H. Ishii: 1991, "Deformation and splitting of pseudo-elliptical vortex rings". In:Advances in Turbulence 3 (eds. A.V. Johanson, P.H. Alfredsson), Springer, Heidelberg.

    Google Scholar 

  4. 4.

    S. Kuwabara: 1988, "Pseudo-canonical formulation of 3-dimensional vortex motion and vorton model analysis".Fluid Dyn. Res. 3, 163.

    Google Scholar 

  5. 5.

    E.A. Novikov: 1983, "Generalized dynamics of three-dimensional vortical singularities (vortons)".Sov. Phys. JETP 57, 566.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alkemade, A.J.Q., Nieuwstadt, F.T.M. & van Groesen, E. The vorton method. Appl. Sci. Res. 51, 3–7 (1993). https://doi.org/10.1007/BF01082505

Download citation

Key words

  • vortex methods
  • vorton method
  • reconnection