Skip to main content
Log in

Rapid XRD determination of the chrysotile/lizardite ratios in asbestos-bearing serpentinites

Die röntgenographische Bestimmung der Chrysotil/Lizardit-Verhältnisse in asbesthaltigen Serpentiniten

  • Published:
Tschermaks mineralogische und petrographische Mitteilungen Aims and scope Submit manuscript

Summary

The quantitative XRD determination of the most common serpentinite minerals, e.g. lizardite and chrysotile, is hampered by strongly overlapping reflections. Reconnaissance investigations indicated that the reflections 204 of lizardite and 008 of chrysotile are best suited for quantitative XRD. These lines are not interferred by other minerals such as brucite, magnesite, chlorite or talc, which are common in serpentinites. A calibration curve for the determination of the chrysotile/lizardite ratios in natural serpentinites has been constructed by means of synthetically prepared chrysotile/lizardite standards. Using this method serpentinites of the Msauli Chrysotile Asbestos Mine, South Africa, were investigated for their relative chrysotile contents. It was found, that the total amount of chrysotile in the ore zone is considerably higher than the amount of extractable chrysotile asbestos fibre.

Zusammenfassung

Die quantitative röntgenographische Bestimmung der beiden häufigsten Serpentinminerale, Lizardit und Chrysotil, ist wegen der Überlagerung ihrer stärksten Reflexe erschwert. Aufgrund von Voruntersuchungen konnte jedoch festgestellt werden, daß die Reflexe 204 von Lizardit und 008 von Chrysotil für die quantitative Bestimmung geeignet sind. Diese Reflexe werden nicht überlagert von denen anderer häufig in Serpentiniten vorkommender Minerale, wie z.B. Brucit, Magnesit, Chlorit oder Talk. Eine Eichkurve zur Bestimmung der Chrysotil/Lizardit-Verhältnisse in natürlichen Serpentiniten wurde mit Hilfe synthetisch hergestellter Standardmischungen aufgestellt. Serpentinite der Msauli Chrysotilasbest Mine, Südafrika, wurden aufgrund der hier vorgestellten Methoden auf ihren relativen Chrysotilanteil untersucht. Es ergab sich, daß der totale Gehalt an Chrysotil in der erzführenden Zone deutlich größer ist als der Gehalt an ausbringbaren Chrysotilasbestfasern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumento, F., 1970: Serpentine mineralogy of ultrabasic intrusions in Canada and on the Mid-Atlantic Ridge. Geol. Surv. Canad., Paper 69-53, 51 pp.

  • Büttner, W., Sagger, R., 1982: The geology of the Msauli Asbestos Mine, Barberton Mountain Land, South Africa. Erzmetall35, 147–151.

    Google Scholar 

  • Colemen, R. G., 1971: Petrologic and geophysical nature of serpentinites. Geol. Soc. Amer. Bull.82, 879–918.

    Google Scholar 

  • Copeland, L. E., Bragg, R. H., 1958: Quantitative X-ray diffraction analysis. Anal. Chem.30, 196–201.

    Google Scholar 

  • Cressey, B. A., 1979: Electron microscopy of serpentine textures. Canad. Min.17, 741–756.

    Google Scholar 

  • —,Zussman, J., 1976: Electron microscopic studies of serpentinites. Canad. Min.14, 307–313.

    Google Scholar 

  • Hochstetter, R., 1965: Zur Kenntnis der Serpentinmineralien. Diss. Saarbrücken, 125 pp.

  • Klug, H. P., Alexander, L. E., 1954: X-ray Diffraction Procedures, 716 pp. New York: Wiley.

    Google Scholar 

  • Krstanović, I., 1968: Crystal structure of single-layer lizardite. Z. Krist.126, 163–169.

    Google Scholar 

  • Prichard, U. M., 1979: A petrographic study of the process of serpentinization in ophiolites and the Ocean crust. Contrib. Min. Petrol.68, 231–241.

    Google Scholar 

  • Selfridge, G. C., Jr., 1936. An X-ray and optical investigation of the serpentine minerals. Amer. Min.21, 463–503.

    Google Scholar 

  • Tertsch, H., 1922: Studien am Westrande des Dunkelsteiner Granulitmassives. Tschermaks Min. Petr. Mitt.35, 177–214.

    Google Scholar 

  • Whittaker, E. J. W., Zussman, J., 1956: The characterization of serpentine minerals by X-ray diffraction. Min. Mag.31, 107–126.

    Google Scholar 

  • Wicks, F. J. 1979. Mineralogy, chemistry and crystallography of chrysotile asbestos. Min. Assoc. Canada, Short Course Hdb.4, 35–78.

    Google Scholar 

  • —,Zussman, J., 1975: Microbeam X-ray diffraction patterns of the serpentine minerals. Canad. Min.13, 244–258.

    Google Scholar 

  • —,Whittaker, E. J. W., 1975: A reappraisal of the structures of the serpentine minerals. Canad. Min.13, 227–243.

    Google Scholar 

  • —, 1977: Serpentine textures and serpentinization. Canad. Min.15, 459–488.

    Google Scholar 

  • —,Plant, A. G., 1979: Electron-microprobe and X-ray-microbeam studies of serpentine textures. Canad. Min.17, 785–830.

    Google Scholar 

  • Wilchinsky, Z. W., 1951: Effect of crystal, grain, and particle size on X-ray power diffracted from powders. Acta Cryst.4, 1–9.

    Google Scholar 

  • Yada, K., 1967: Study of chrysotile asbestos by a high resolution electron microscope. Acta Cryst.23, 704–707.

    Google Scholar 

  • —, 1971: Study of microstructure of chrysotile asbestos by high resolution electron microscope. Acta Cryst.A27, 659–664.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büttner, W., Saager, R. Rapid XRD determination of the chrysotile/lizardite ratios in asbestos-bearing serpentinites. TMPM Tschermaks Petr. Mitt. 30, 177–187 (1982). https://doi.org/10.1007/BF01082328

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01082328

Keywords

Navigation