Skip to main content
Log in

Comprehensive kinetic model for electron-beam-excited XeCs+ ionic excimers

  • Regular Papers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A theoretical model that accounts for fundamental plasma processes leading to the formation and decay of XeCs+ ionic excimers in high-pressure electron-beam-excited Ar/Xe/Cs mixtures was developed. Numerical calculations based on the model were performed. For atmospheric gas mixtures, the model predicts an intrinsic efficiency (energy stored in upper state/energy deposited) of 18%. Model calculations also indicate that while XeCs+ was predominantly formed via the rare-gas ion (Xe+) channel over the entire e-beam duration, the rare-gas metastable (Xe*) channel assumes dominance in the afterglow period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Britt, B.C.F.M. Laskowski, J.L. Lawless, W.C. Stwalley: Alkali Ion Excimer Concept, presented at Topical Meeting of Contractors, DARPA, Washington, DC (1983) E.J. Britt, B.C.F.M. Laskowski, J.L. Lawless, W.C. Stwalley: U.S. Patent No. 4777638

    Google Scholar 

  2. R. Sauerbrey, H. Langhoff: IEEE J. QE-21, 179 (1985)

    Google Scholar 

  3. N.G. Basov, M.G. Voitik, V.S. Zuev, V.P. Kutakhov: Sov. J. Quantum Electron.15, 1455 (1985);15, 1461 (1985)

    Google Scholar 

  4. F. Steigerwald, F. Emmert, H. Langhoff, W. Hammer, T. Griegel: Opt. Commun.56, 240 (1985)

    Google Scholar 

  5. S. Kubodera, L. Frey, P.J.K. Wisoff, R. Sauerbrey: Opt. Lett.13, 446 (1988)

    Google Scholar 

  6. N.G. Basov, M.G. Voitik, V.S. Zuev, A.D. Klementov, V.P. Kutakhov: Sov. J. Quantum Electron.17, 106 (1987)

    Google Scholar 

  7. M. Schumann, H. Langhoff: J. Chem. Phys.91, 5440 (1989)

    Google Scholar 

  8. P.S. Millar, G. Warwar, P.J. Wisoff, R. Sauerbrey, K. Balasubramanium: Appl. Phys. Lett.55, 2176 (1989)

    Google Scholar 

  9. P.S. Millar: Rare gas alkali ionic excimers. Ph. D. Thesis, Rice University, TX (1990)

    Google Scholar 

  10. D. Lo, J.L. Lawless: Opt. Commun.86, 151 (1991)

    Google Scholar 

  11. M.J. Berger, S.M. Seltzer: NASA Report SP-3012, U.S. National Aeronautics & Space Administration (1964)

  12. D.J. Eckstrom, H.H. Nakano, D.C. Lorents, T. Rothem, J.A. Belts, M.E. Lainhart, D.A. Dakin, J.C. Maenchen: J. Appl. Phys.64, 1679 (1988)

    Google Scholar 

  13. C.W. Werner, E.V. George, P.W. Hoff, C.K. Rhodes: IEEE J. QE-13, 769 (1977)

    Google Scholar 

  14. L.A. Levin, S.E. Moody, L. Klosterman, R.E. Center, J.J. Ewing: IEEE J. QE-17, 2282 (1981)

    Google Scholar 

  15. F. Kannari, A. Suda, M. Obara, T. Fujioka: IEEE J. QE-19, 1587 (1983)

    Google Scholar 

  16. Y-W. Lee, E. Matsui, F. Kannari, M. Obara: IEEE Trans. ED-36, 2053 (1989)

    Google Scholar 

  17. C.J. Elliot, A.E. Green: J. Appl. Phys.47, 1946 (1976)

    Google Scholar 

  18. The potential curves of XeCs(X)+ should be similar to XeRb(X)+ [7]. G. Warwar: Rare gas alkali ionic excimers. Master Thesis, Rice University, TX (1989)

    Google Scholar 

  19. T.H. Johnson, A.M. Hunter: J. Appl. Phys.51, 2406 (1976)

    Google Scholar 

  20. D.C. Lorents: Physica C82, 19 (1976)

    Google Scholar 

  21. N.G. Basov, V.A. Danilychev: Sov. Phys.-Usp.29, 31 (1986)

    Google Scholar 

  22. A.V. Eletskii: Sov. Phys.-Usp.21, 502 (1978)

    Google Scholar 

  23. H. Heil, B. Scott: Phys. Rev.145, 279 (1966) R.H. McFarland, J.O. Kinney: Phys. Rev.137, 1059 (1965)

    Google Scholar 

  24. J.F. Nolan, A.V. Phelps: Phys. Rev.140, 792 (1965)

    Google Scholar 

  25. P. Mansbach, J. Keck: Phys. Rev.181, 275 (1969)

    Google Scholar 

  26. D.W. Norcross, P.M. Stone: J. Quant. Spectrosc. Radiat. Transfer8, 655 (1967)

    Google Scholar 

  27. B. Sayer, J.C. Jeannet, J. Lozingot, J. Berlande: Phys. Rev. A8, 3012 (1973)

    Google Scholar 

  28. V.T. Gylys, R.D. Bower, D.G. Harris, T.T. Yang: Technical Digest of CLEO 90', Anaheim, CA (1990) Paper CPDP24-1

  29. J. Fiedler, L. Frey, F. Steigerwald, H. Langhoff, T. Griegel, K. Petkau, W. Hammer: Z. Phys. D11, 141 (1989)

    Google Scholar 

  30. Analogous to Xe+ + 2Xe→2Xe +2 + Xe. [13]

  31. A.P. Vitols, H.J. Oskam: Phys. Rev. A8, 1860 (1973)

    Google Scholar 

  32. L.G. Gray, R.S. Keiffer, J.M. Ratliff, F.B. Dunning, G.K. Walters: Phys. Rev. A32, 1348 (1985)

    Google Scholar 

  33. J. Lorenzen, H. Hotop, M.-W. Ruf: Z. Phys. D1, 261 (1986)

    Google Scholar 

  34. M.-W. Ruf, A.J. Yencha, H. Hotop: Z. Phys. D5, 9 (1987)

    Google Scholar 

  35. Assume the same rate for Xe2(l)* and Xe2(3)* [12]

  36. G.V. Marr, D.M. Creek: Proc. Roy. Soc. London, Ser. A304, 233 (1968)

    Google Scholar 

  37. H.H. Michels, R.H. Hobbs, L.A. Wright: J. Chem. Phys.71, 5053 (1979)

    Google Scholar 

  38. Calculated values using the formula developed by D.C. Lorents, D.J. Eckstrom, D.L. Huestis: InExcimer Formation and Decay Processes in Rare Gases, Final Report MP 73-2, SRI Project 2018 (1973)

  39. Analogous to relaxation of rare gas halides. A. Kvaran, M.J. Shaw, J.P. Simon: Appl. Phys. B46, 95 (1988)

    Google Scholar 

  40. J.W. Keto, R.E. Gleason, Jr., G.K. Walters: Phys. Rev. Lett.33, 1365 (1974)

    Google Scholar 

  41. M. Ohwa, M. Kushner: J. Appl. Phys.65, 4138 (1989)

    Google Scholar 

  42. D.W. Trainor, J.H. Jacob: Appl. Phys. Lett.37, 675 (1980)

    Google Scholar 

  43. W.L. Morgan, M.J. Pound: Bull. Am. Phys. Soc.26, 722 (1981) Abstract FB-3

    Google Scholar 

  44. R. Sauerbrey: Private communications (1990)

  45. R. Shuker, A. Gallagher, A.V. Phelps: J. Appl. Phys.51, 1306 (1980)

    Google Scholar 

  46. M.A. Biondi: InPrinciples of Laser Plasma, ed. by G. Bekifi (Wiley, New York 1976) Chap. 4

    Google Scholar 

  47. M.I. Chibisov, S.I. Yakovienko: JETP36, 21 (1979)

    Google Scholar 

  48. D.R. Bates, A.E. Kingston, R.W.P. McWhirter: Proc. R. Soc. London, Ser. A270, 155 (1962)

    Google Scholar 

  49. J.L. Lawless: J. Appl. Phys.55, 3226 (1984)

    Google Scholar 

  50. J.G. Xie, B. Luo, D. Lo: J. Phys. B24, 3077 (1991)

    Google Scholar 

  51. M.J. Kushner: J. Appl. Phys.66, 2297 (1989)

    Google Scholar 

  52. G. Gioumousis, D.P. Stevenson: J. Chem. Phys.29, 294 (1958)

    Google Scholar 

  53. N.J. Mason, W.R. Newell: J. Phys. B20, 1357 (1987)

    Google Scholar 

  54. Ch. A. Brau: InExcimer Lasers, ed. by C.K. Rhodes, Topics Appl. Phys. Vol. 30 (Springer, Berlin, Heidelberg 1979) p. 87

    Google Scholar 

  55. D. Rapp, P. Englander-Golden: J. Chem. Phys.43, 1464 (1965)

    Google Scholar 

  56. M. Hayashi: J. Phys. D16, 581 (1983)

    Google Scholar 

  57. Rate was estimated. See text for discussion

  58. Rate determined by detailed balance from reverse reaction

  59. This reaction is identical to another in the list except that argon appears as the third body in place of xenon. Argon is assumed 75% as effective as xenon

  60. X. Da, K.-I. Ueda, H. Takuma: Appl. Phys. Lett.59, 1028 (1991)

    Google Scholar 

  61. H.M.J. Bastiaens, F.T.J.L. Lankhorst, P.J.M. Peters, W.J. Witteman: Appl. Phys. Lett.60, 2834 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawless, J.L., Lo, D. Comprehensive kinetic model for electron-beam-excited XeCs+ ionic excimers. Appl. Phys. B 60, 391–403 (1995). https://doi.org/10.1007/BF01082276

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01082276

PACS

Navigation