Advertisement

Journal of Materials Science

, Volume 22, Issue 7, pp 2557–2559 | Cite as

The single-crystal elastic constants of cubic (3C) SiC to 1000° C

  • Z. Li
  • R. C. Bradt
Papers

Abstract

Experimental measurements of the polycrystalline elastic moduli of the cubic (3C) beta polytype of SiC at elevated temperatures and the room-temperature single-crystal elastic constants were combined through equations that relate the two to determine the stiffnesses Cij and the compliances Sij to 1000° C. The results demonstrate a general method for estimating the elevated temperature single-crystal constants of cubic crystals and illustrate that the cubic (3C) beta polytype of SiC becomes more elastically anisotropic at elevated temperatures.

Keywords

Polymer Elastic Modulus Elevated Temperature Experimental Measurement Elastic Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Armstrong andN. R. Borch,Met. Trans 2 (1971) 3037.Google Scholar
  2. 2.
    C. N. Reid “Deformation Geometry for Materials Scientists” (Pergamon, Oxford, 1973) p. 65.Google Scholar
  3. 3.
    J. Jortner (ed.), “Thermomechanical Behaviour of High Temperature Composites”, (ASME, New York, 1982).Google Scholar
  4. 4.
    G. Simmons andH. Wang, “Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook”, 2nd Edn (MIT Press, Cambridge, 1971).Google Scholar
  5. 5.
    C. Suess,J. Rech. CNRS 54 (1961) 23.Google Scholar
  6. 6.
    L. M. Belyaev, “Ruby and Sapphire”, (Nauka, Moscow, 1974) p. 8.Google Scholar
  7. 7.
    R. J. Arsenault,Mater. Sci. Eng. 64 (1984) 171.Google Scholar
  8. 8.
    P. F. Becher andG. C. Wei,J. Amer. Ceram. Soc. 67 (1984) C267.Google Scholar
  9. 9.
    J. F. Nye, “Physical Properties of Crystals”, (Clarendon, Oxford, 1969) p. 147.Google Scholar
  10. 10.
    K. B. Tolpygo,Sov. Phys. - Solid State 2 (1961) 2367.Google Scholar
  11. 11.
    T. Mura, “Micromechanics of Defects in Solids” (Nijhoff, The Hague, 1982) p. 364.Google Scholar
  12. 12.
    I. C. Noyan,Mater. Sci. Eng. 75 (1985) 95.Google Scholar
  13. 13.
    J. B. Wachtman Jr, in Proceedings of Symposium on Mechanical and Thermal Properties of Ceramics, Gaithersburg, Maryland, April, 1968, National Bureau of Standards Technical Publication 303 (1969). 14.|H. C. Chandan, PhD dissertation, Pennsylvania State University (1980).Google Scholar
  14. 15.
    C. H. McMurtry, M. R. Kasprzyk andR. G. Naum, in “Silicon Carbide - 1973”, edited by R. C. Marshall, J. W. Faust Jr and C. E. Ryan (University of South Carolina Press, Columbia, 1974) p. 359.Google Scholar
  15. 16.
    P. T. B. Schaffer andC. K. Jun,Mater. Res. Bull. 7 (1972) 63.Google Scholar
  16. 17.
    K. D. McHenry andR. E. Tressler,J. Amer. Ceram. Soc. 63 (1980) 152.Google Scholar
  17. 18.
    D. H. Chung andW. R. Buessem, in “Anisotropy in Single Crystal Refactory Compounds”, edited by F. W. Vahldiek and S. A. Mersol (Plenum, New York, 1968) p. 217.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • Z. Li
    • 1
  • R. C. Bradt
    • 1
  1. 1.Department of Materials Science and Engineering, College of EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations