Skip to main content
Log in

A study of laser-produced copper plasma at reduced pressure for spectroscopic applications

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The aim of this work is to specify experimental conditions which allow atomic emission with the finest possible linewidths to be obtained in a laser-produced copper plasma at reduced pressure (20 mTorr). For the initial stage of the plasma evolution (t < 1 µs) a three-dimensional expansion description of the plasma plume is developed by means of pictures taken with a gated and Intensified Charge-Coupled Device (ICCD) camera. Full linewidths and line intensities of investigated copper transitions obtained by high-resolution spectrometry are related to the spatial position in the plasma plume with this mapping. The influence of different relevant plasma parameters on the linewidth as well as its space and time evolution is discussed. Best values of full linewidths of 0.1 Å were obtained for the CuI transition 5105 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Niemax: InOptoelectronics for Environmental Science by M. Martucelli, C.N. Chester (Plenum, New York 1990)

    Google Scholar 

  2. M. Autin, A. Briand, P. Mauchien, J. M. Mermet: Spectrochim. Acta B48, 851 (1993)

    Google Scholar 

  3. L.J. Radziemski, D.A. Cremers: InLaser-Induced Plasmas and Applications (Dekker, New York 1989)

    Google Scholar 

  4. W. Pietsch, A. Briand, P. Mauchien, A. Petit: InLaser Ablation Mechanisms and Applications, ed. by J.C. Miller, D.B. Geohegan, AIP Conf. Proc., Vol. 288 (AIP, New York 1994)

    Google Scholar 

  5. T. Gibert, B. Dubreuil, M.F. Barthe, J.L. Debrun: J. Appl. Phys.74, 3506 (1993)

    Google Scholar 

  6. W.H. King: InIsotope Shifts in Atomic Spectra, ed. by A. Burke P. Kleinpoppen (Plenum, New York 1984)

    Google Scholar 

  7. D.B. Geohegan: InLaser Ablation of Electronic Materials: Basic Mechanisms and Applications, ed. by E. Fogarassy, S. Lazare (Elsevier, Amsterdam 1992) p. 73

    Google Scholar 

  8. D.B. Geohegan: Thin Solid Films220, 138 (1992)

    Google Scholar 

  9. R.W. Dreyfus: J. Appl. Phys.69, 1721 (1991)

    Google Scholar 

  10. C.H. Corliss, W. R. Bozman: Nat'l Bur. Stand. (US) Monogr.53 (1961)

  11. W.L. Wiese: InAtomic Transition Probabilities, Nat'l Standard Ref. Data Ser., Vols I + II (US Government, Washington, DC, 1966, 1969)

    Google Scholar 

  12. I.G. Rieff: XVI Coll. Spect. Int'l Heidelberg (1971) p. 317

  13. Handbook of Chemistry and Physics, 68th edn. (CRC, Boca Raton, FL 1988)

  14. P.E. Dyer: Appl. Phys. Lett.55 1630 (1989)

    Google Scholar 

  15. D.B. Geohegan: InLaser Ablation: Mechanisms and Applications, ed. by J.C. Miller, R.F. Haglund, Lect. Notes Phys., Vol. 389 (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  16. C. Fleurier: InSpectral Line Shapes, Vol. 4 (Deepack, Hampton, VA 1981)

    Google Scholar 

  17. N. Konjevic, W.L. Wiese: J. Phys. Chem. Ref. Data19, 1307 (1990)

    Google Scholar 

  18. J.C.S. Kools: Laser ablation and deposition of metals. Dissertation, Eindhoven, The Netherlands (1992)

  19. R.W. Dreyfus: High Temp. Sci.27, 503 (1990)

    Google Scholar 

  20. R. Kelly, R.W. Dreyfus: Surf. Sci.198, 263 (1988)

    Google Scholar 

  21. R. Kelly, R.W. Dreyfus: Nucl. Instrum. Methods Phys. Res. B32, 341 (1988)

    Google Scholar 

  22. R. Kelly: J. Chem. Phys.92, 5047 (1990)

    Google Scholar 

  23. R. Kelly: Phys. Rev. A46, 860 (1992)

    Google Scholar 

  24. R. Kelly, A. Braren: Appl. Phys. B53, 160 (1991)

    Google Scholar 

  25. D.B. Geohegan: Appl. Phys. Lett. 60, 2732 (1992)

    Google Scholar 

  26. R. Kelly, A. Miotello, B. Braren, A. Gupta, K.G. Casey: Nucl. Instrum. Methods Phys. Res. B65, 187 (1992)

    Google Scholar 

  27. A. Vertes: InLaser Ablation: Mechanisms and Applications II, ed. by J.C. Miller, D.B. Geohegan, AIP Conf. Proc., Vol. 288 (AIP, New York 1994)

    Google Scholar 

  28. A. Vertes, R.W. Dreyfus, D.E. Platt: IBM Research Report, RC 18520 (1992)

  29. R. Kelly, A. Miotello: Appl. Phys. B57, 145 (1993)

    Google Scholar 

  30. W. Pietsch: Plasma produit par laser à pression réduite pour le contrôle analytique isotropique, Univ. d'Orléans, France (1994)

    Google Scholar 

  31. W. Pietsch, A. Briand, P. Mauchien, A. Petit: Patent No. 93 07 179 (France) of 15/06/93

  32. W. Pietsch, A. Petit, A. Briand: Isotope ratio determination of uranium by OES on a laser-produced plasma: Basic investigations (unpublished)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Briand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietsch, W., Dubreuil, B. & Briand, A. A study of laser-produced copper plasma at reduced pressure for spectroscopic applications. Appl. Phys. B 61, 267–275 (1995). https://doi.org/10.1007/BF01082046

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01082046

PACS

Navigation