Skip to main content
Log in

Coexisting cummingtonite and calcic amphibole in amphibolites from the Schneeberg complex, Tyrol, Austria

Koexistierende Cummingtonite und Hornblenden in Amphiboliten des Schneeberger Zuges, Tirol, Österreich

  • Published:
Tschermaks mineralogische und petrographische Mitteilungen Aims and scope Submit manuscript

Summary

The formation of cummingtonite in two Ca and Al-poor and Mg-rich amphibolites from the Austroalpine Schneeberg complex occurred at a maximum temperature of about 550°C (5 kb). This is a result of the amphibolite facies Alpine overprint in this part of the Eastern Alps.

Textural and chemical relations suggest (Mg−1Si−1Al2)-continuous reactions in the bivariant CMASH-assemblageCam-Cum-Chl * followed by the discontinuous reactionCam+Chl+Qu=Cum+Plg+H2O to be responsible for the formation of cummingtonite in these samples.

The Mg−Fe distribution coefficient\(K_{D_{Mg - Fe} }^{Cam - Cum} = \frac{{(Mg/Fe)Cam}}{{(Mg/Fe)Cum}}\) with values of 0.6–0.7 is similar to cummingtonite-Ca-amphibole pairs from amphibolites with oligoclase+quartz reported in the literature. The Mg/(Mg+Fe) ratio of the calcic amphiboles is lower (0.539–0.555) than the coexisting cummingtonites (0.648–0.662).

Zusammenfassung

In zwei Ca- und Al-armen Amphiboliten des nördlichen Schneebergerzuges (Rotmoostal) bildete sich Cummingtonit bei Maximaltemperaturen von 550°C (5 kb) bei der Altalpidschen Metamorphose.

Texturelle und chemische Beziehungen lassen vermuten, daß sich Cummingtonite sowohl nach kontinuierlichen Reaktionen (in bezug auf den Tschermak-Vektor Mg−1Si−1Al2) gebildet hat, als auch aus Hornblende und Chlorit nach der diskontinuierlichen ACF-ReaktionCam+Chl+Qu=Cum+Plg+H2O hervorgegangen ist.

Der Mg−Fe-Verteilungskoeffizient zwischen Hornblende und Cummingtonit entspricht den aus der Literatur bekannten Werten. Er beträgt zwischen 0.6–0.7 für die beginnende Amphibolitfazies. Die Mg/(Mg+Fe)-Verhältnisse sind höher in Cummingtonit (0.648–0.662) als in der koexistierenden Hornblende (0.539–0.555).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bence, A. E., Albee, A. L., 1968: Empirical correction factors for the electron probe micro-analysis of silicates and oxides. J. Geol.76, 382–403.

    Google Scholar 

  • Cooper, A. F., 1972: Progressive metamorphism of metabasite rocks from the Haast schist group of southern New Zealand. J. Petrol.13, 457–492.

    Google Scholar 

  • Ernst, W. G., 1968: Amphiboles, 152 p Berlin-Heidelberg-New York Springer.

    Google Scholar 

  • Eskola, P., 1950: Paragenesis of cummingtonite and hornblende from Muuruvesi, Finland. Amer. Min.35, 728–734.

    Google Scholar 

  • Hey, M. H., 1954: A new review of chlorites. Min. Mag.30, 277–292.

    Google Scholar 

  • Hoinkes, G., 1978: Zur Mineralchemie und Metamorphose toniger und mergeliger Zwischenlagen in Marmoren des südwestlichen Schneebergerzuges (Ötztaler Alpen, Südtirol). N. Jb. Min. Abh.131, 272–303.

    Google Scholar 

  • Hoinkes, G., 1980: Mineralogie und Metamorphose im westlichen Schneebergerzug und angrenzenden Altkristallin Habilitationsschrift, Innsbruck.

  • —, 1981: Mineralreaktionen und Metamorphosebedingungen in Metapeliten des westlichen Schneebergerzuges und des angrenzenden Altkristallins (Ötztaler Alpen). Tschermaks Min. Petr. Mitt.28, 31–54.

    Google Scholar 

  • —,Purtscheller, F., Tessadri, R., 1982: Polymetamorphose im Ostalpin westlich der Tauern (Ötztaler Masse, Schneebergerzug, Brennermesozoikum). Geol. Paläont. Mitt. Ibk.12, 95–113.

    Google Scholar 

  • —, 1983: Cretaceous metamorphism of metacarbonates in the Austroalpine Schneeberg complex, Tyrol. SMPM63, 95–114.

    Google Scholar 

  • Kisch, H. J., Warnaars, F. W., 1969. Distribution of Mg and Fe in cummingtonite-hornblende and cummingtonite-actinolite pairs from metamorphic assemblages. Contr. Min. Petrol.24, 245–267.

    Google Scholar 

  • Klein, C., 1968: Coexisting amphiboles. J. Petrol.9, 281–330.

    Google Scholar 

  • —, 1969: Two-amphibole assemblages in the system actinolite-hornblende-glaucophane. Amer. Min.54, 212–237.

    Google Scholar 

  • Leake, B. E., 1978: Nomenclature of amphiboles. Amer. Min.63, 1023–1052.

    Google Scholar 

  • Mogessie, A., Tessadri, R., 1982: A basic computer program to determine the name of an amphibole from an electron-microprobe analysis. Geol. Paläont. Mitt. Ibk.21, 259–289.

    Google Scholar 

  • Mogessie, A., 1984: Petrology and Geochemistry of the Oetztal-Stubai amphibolites, Eastern Alps (Tyrol, Austria), Diss. Univ. Innsbruck, p. 258.

  • —,Purtscheller, F., Tessadri, R., 1985: Geochemistry of amphibolites from the Oetztal-Stubai complex (northern Tyrol, Austria). Chem. Geol.51, 103–113.

    Google Scholar 

  • Müller, R. F., 1961: Analysis of relations among Mg, Fe and Mn in certain metamorphic minerals. Geochim. Cosmochim. Acta25, 267–296.

    Google Scholar 

  • Purtscheller, F., Rammlmair, D., 1982: Alpine metamorphism of diabase dikes in the Ötztal-Stubai metamorphic complex. Tschermaks Min. Petr. Mitt.29, 205–221.

    Google Scholar 

  • Rice, J. M., Evans, B. W., Trommsdorff, V., 1974. Widespread occurrence of magnesiocummingtonite in ultramafic schists, Cima di Gagnone, Ticino, Switzerland. Contr. Min. Petrol.43, 245–251.

    Google Scholar 

  • Robinson, P., Jaffe, H., 1969: Chemographic exploration of amphibole assemblages from central Massachusetts and southwestern New Hampshire. Spec. Pap. Min. Soc. Am.2, 25–74.

    Google Scholar 

  • Rock, N. M. S., Leake, B. E., 1984: The international mineralogical association amphibole nomenclature scheme: computerization and its consequences. Min. Mag.48, 211–227.

    Google Scholar 

  • Shido, F., 1958: Plutonic and metamorphic rocks of the Nikoso Iritono districts in the central Abukuma plateau. J. Fa. Sci. Univ. Tokyo, Sect. II, 11, pp. 131–217.

    Google Scholar 

  • Stout, J. H., 1971: Four coexisting amphiboles from Telemark, Norway. Amer. Min.56, 212–224.

    Google Scholar 

  • —, 1972: Phase petrology and mineral chemistry of coexisting amphiboles from Telemark, Norway. J. Petrol.13, 99–145.

    Google Scholar 

  • Vernon, R. H., 1962: Coexisting cummingtonite and hornblende in an amphibolite from Duchess, Queensland, Australia. Amer. Min.47, 360–370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoinkes, G., Mogessie, A. Coexisting cummingtonite and calcic amphibole in amphibolites from the Schneeberg complex, Tyrol, Austria. TMPM Tschermaks Petr. Mitt. 35, 33–45 (1986). https://doi.org/10.1007/BF01081917

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081917

Keywords

Navigation