Skip to main content

Advertisement

Log in

On the crystal structure of the zeolite heulandite

Über die Kristallstruktur des Zeoliths Heulandit

  • Published:
Tschermaks mineralogische und petrographische Mitteilungen Aims and scope Submit manuscript

Summary

Heulandite is a zeolite of ideal composition (Ca,Na2)Al2Si7O18·6H2O which crystallizes in the monoclinic system, witha=17.718,b=17.897,c=7.428 Å and β=116°25′; Z=4. As heulandite is strongly pseudocentrosymmetric its structure has been refined, by the least-squares method, in space groupsCm, C2 andC2/m. The “more probable” space group results to beCm. A detailed description of the tetrahedral framework has been given byMerkle andSlaughter (1968). The average distances (Si,Al)−O within each tetrahedron show a partial order of Si and Al atoms in the framework. The observed order is different from that reported byMerkle andSlaughter. Half of the exchangeable cations sites are in sevenfold coordination and half in eightfold coordination; according toMerkle andSlaughter, on the contrary, they are always eightfold.

Zusammenfassung

Heulandit ist ein Zeolith der idealen Zusammensetzung (Ca,Na2)Al2Si7O18 ·6H2O, der monoklin mita=17,718,b=17,897,c=7,428 Å und β=116°25′ kristallisiert; Z=4. Da Heulandit ausgeprägt pseudo-zentrosymmetrisch ist, wurde seine Struktur mittels der Methode der Kleinsten Quadrate in den RaumgruppenCm, C2 undC2/m verfeinert. Es ergibt sich, daß die “wahrscheinlichere” RaumgruppeCm ist. Eine detaillierte Beschreibung des Tetraedergerüstes wurde vonMerkle undSlaughter (1968). gegeben. Die durchschnittlichen (Si,Al)O-Abstände innerhalb einer Tetraederart zeigen eine teilweise Ordnung von Si und Al im Gerüst an. Die beobachtete Ordnung ist verschieden von jener, dieMerkle undSlaughter angegebeb haben. Je die Hälfte der Lagen der austauschbaren Kationen hat 7- bzw. 8-Koordination; im Gegensatz dazu habenMerkle undSlaughter durchwegs 8-Koordination angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti, A., andG. Gottardi, 1966: A Monte Carlo method for the calculation of the transmission factors of crystals of any shape and absorption power. Acta Cryst.21, 833–834.

    Google Scholar 

  • Amirov, S. T., W. W. Ilyuchin, andN. V. Belov, 1967: Crystal structure of Ca-zeolite-laumontite (leonhardite) CaAl2Si4O12·nH2O (2<n<4). Dokl. Akad. Nauk SSSR, Earth. Sci. Sect.174, 121–124.

    Google Scholar 

  • Bond, W. L., 1943: A mineral survey of piezo-electric materials. Bell. System Techn. J. (New York)22, 145–152.

    Google Scholar 

  • Busing, W. R., K. O. Martin, andH. A. Levy, 1962: ORFLS. USAEC Report OR NL-TM-305, Oak Ridge National Laboratory, Tennessee.

    Google Scholar 

  • Coombs, D. S., 1952: Cell size, optical properties and chemical composition of laumontite and leonhardite. Amer. Min.37, 812–830.

    Google Scholar 

  • Galli, E., 1971: Refinement of the crystal structure of Stilbite. Acta Cryst.B 27, 833–841.

    Google Scholar 

  • — andA. Alberti, 1971: The crystal structure of rinkite. Acta Cryst.B 27, 1277–1284.

    Google Scholar 

  • Hamilton, W. C., 1965: Significance tests on the crystallographic R Factors. Acta Cryst.18, 502–510.

    Google Scholar 

  • Hanson, H. P., F. Herman, J. D. Lea, andS. Skillman, 1964: HFS Atomic Scattering Factors. Acta Cryst.17, 1040–1050.

    Google Scholar 

  • Howells, E. R., D. C. Phillips, andD. Rogers, 1950: The probability distribution of X-ray Intensities. II. Experimental Investigation and the X-ray detection of Centres of Symmetry. Acta Cryst.3, 210–214.

    Google Scholar 

  • Meier, W. M., 1968: Zeolite structures. Molecular Sieves, London: Society of Chemical Industry. 10–27.

    Google Scholar 

  • Merkle, A. B., andM. Slaughter, 1968: Determination and refinement of the structure of heulandite. Amer. Min.53, 1120–1138.

    Google Scholar 

  • Parthasarathy, R., J. G. Sime, andJ. C. Speakman, 1969: Ambiguity in the results of least-squares analysis—another cautionary tale. Acta Cryst.B 25, 1201–1202.

    Google Scholar 

  • Perrotta, A. J., 1967: The crystal structure of epistilbite. Min. Mag.36, 480–490.

    Google Scholar 

  • Schramm, V., andK. F. Fischer, 1970: Refinement of the crystal structures of Laumontite. Second International Conference on Molecular Sieve Zeolites. 517–523.

  • Slaughter, M., 1970: Crystal structure of stilbite. Amer. Min.55, 387–397.

    Google Scholar 

  • Smith, J. V., andS. W. Bailey, 1963: Second Review of Al−O and Si−O Tetrahedral Distances. Acta Cryst.16, 801–811.

    Google Scholar 

  • Ventriglia, U., 1953: Symmetry of heulandite and piezoelectricity of some zeolites (Italian). Rend. Soc. Min. Ital.9, 268–270.

    Google Scholar 

  • — 1955: The structure of heulandite (Italian). Periodico Min. (Roma)24, 49–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 1 Figure

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberti, A. On the crystal structure of the zeolite heulandite. TMPM Tschermaks Petr. Mitt. 18, 129–146 (1972). https://doi.org/10.1007/BF01081798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081798

Keywords

Navigation