Skip to main content
Log in

GLF - A simulation code for X-ray lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper describes the multi-dimensional Non-Local Thermodynamic Equilibrium (NLTE) simulation code GLF. GLF simulates those physical processes needed for modeling X-ray lasers: atomic kinetics, radiation transport, hydrodynamics and basic laser-plasma interactions. GLF is constructed to be modular, portable and efficient. This paper concentrates on the physical formulations and numerical methods used in GLF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Mihalas:Stellar Atmospheres (Freeman, San Francisco 1978)

    Google Scholar 

  2. J.C. Stewart, K.D. Pyatt: Astrophys. J.144, 1203 (1966)

    Google Scholar 

  3. D.H. Hummer, D. Mihalas: Astrophys. J.331, 794 (1988)

    Google Scholar 

  4. S. Kaushik, P.L. Hagelstein: J. Comput. Phys.101, 360 (1992)

    Google Scholar 

  5. D.S. Kershaw: J. Comput. Phys.26, 43 (1978)

    Google Scholar 

  6. P. Feautrier: C.R. Acad. Sci.258, 3189 (1964)

    Google Scholar 

  7. G.L. Olson, P.B. Kunasz: J. Quant. Spectrosc. Radiat. Transfer38, 325 (1987)

    Google Scholar 

  8. H.A. Scott:Linearization Algorithms for Line Transfer (University of California Report UCRL-JC-105464, Livermore, CA 1990)

    Google Scholar 

  9. M.L. Adams:Proc. of the Topical Meeting in Advances in Mathematics, Computations and Reactor Physics, Vol. 3, Sects. 13.2, 2–1 (Pittsburg, PA 1991)

    Google Scholar 

  10. P. Kunasz, L.H. Auer: J. Quant. Spectrosc. Radiat. Transfer39, 67 (1988)

    Google Scholar 

  11. P.B. Kunasz, G.L. Olson: J. Quant. Spectrosc. Radiat. Transfer39, 1 (1988)

    Google Scholar 

  12. W. Kalkofen (ed.):Numerical Radiative Transfer (Cambridge Univ. Press, Cambridge 1987)

    Google Scholar 

  13. L. Auer, J. Heasley: Astrophys. J.205, 165 (1976)

    Google Scholar 

  14. G.L. Olson, L.H. Auer, J.R. Buchler: J. Quant. Spectrosc. Radiat. Transfer35, 431 (1986)

    Google Scholar 

  15. K.C. Ng: J. Chem. Phys.61, 2680 (1974)

    Google Scholar 

  16. Y. Saad, M.H. Schultz: SIAM J. Sci. Stat. Comput.7, 856 (1986)

    Google Scholar 

  17. W.L. Kruer:The Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, CA 1988)

    Google Scholar 

  18. G. Bekefi:Radiation Processes in Plasmas (Wiley, New York 1966)

    Google Scholar 

  19. N.M. Kroll, K.M. Watson: Phys. Rev. A8, 804 (1973)

    Google Scholar 

  20. A.B. Langdon: Phys. Rev. Lett.44, 575 (1980)

    Google Scholar 

  21. V.L. Ginzberg:The Properties of Electromagnetic Waves in Plasma (Pergamon, New York 1964)

    Google Scholar 

  22. S.A. Brown, D. Braddy:PACT User's Manual (University of California Report UCRL-MA-112087, Livermore, CA 1992)

    Google Scholar 

  23. PACT is available on the Internet via anonymous FTP from phoenix.ocf.llnl.gov.

  24. The line transfer routines are available under the names LXF1D/ LXF2D from: Energy Scientific and Technology Software Center, P.O. Box 1020, Oak Ridge, TN 37831-1020, USA

  25. A.S. Wan, R.S. Walling, H.A. Scott, R.W. Mayle, A.L. Osterheld:Proc. of the Int'l Coll. on X-Ray Lasers (Schliersee, Germany 1992) p. 293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, H.A., Mayle, R.W. GLF - A simulation code for X-ray lasers. Appl. Phys. B 58, 35–43 (1994). https://doi.org/10.1007/BF01081711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081711

PACS

Navigation