Skip to main content
Log in

Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Atomic hydrogen has been probed in a hydrogen/oxygen flame at atmospheric pressure by use of two-photon, picosecond Laser-Induced Fluorescence (LIF). The fluorescence was detected and temporally resolved by a streak camera with a temporal resolution of a few ps which allowed determination of the collisionally quenched lifetime of then = 3 level of atomic hydrogen. The measurements were performed for three flame stoichiometries,φ = 1.4, 2.0 and 3.5, and were spatially resolved with respect to the reaction zone. The evaluated lifetime was found to vary rapidly in the reaction zone from 60 to 105 ps just above and then levelled out at 90 ps throughout the post-flame region. Power dependence measurements of the fluorescence signal indicated the presence of other phenomena, such as saturation, ionization and photodissociation. Since an inverted population is created between then = 3 and then = 2 level, Stimulated Emission (SE) of considerable magnitude occurred and was studied temporally resolved using the streak camera. The LIF and SE signal strengths for individual laser pulses were recorded in order to analyse a possible anti-correlation between the LIF and the SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Eckbreth:Laser Diagnostics for Combustion and Species (Abacus, Turnbridge Wells, UK 1988)

    Google Scholar 

  2. D.R. Crosley: Combust. Flame78, 153 (1989)

    Google Scholar 

  3. A.P. Baronavski, J.R. McDonald: Appl. Opt.16, 1897 (1977)

    Google Scholar 

  4. W. Ferrel, C. Chen, M. Payne, R. Willis: Chem. Phys. Lett.97, 460 (1983)

    Google Scholar 

  5. J.H. Bechtel, R.E. Teets: Appl. Opt.18, 4138 (1979)

    Google Scholar 

  6. H.M. Hertz and M. Aldén: Appl. Phys. B42, 97 (1987)

    Google Scholar 

  7. D. Stepowski and M.J. Cottereau: Appl. Opt.18, 354 (1979)

    Google Scholar 

  8. N.S. Bergano, P.A. Jaanimagi, M.M. Salour, J.H. Bechtel: Opt. Lett.8, 443 (1983)

    Google Scholar 

  9. R. Schwarzwald, P. Monkhouse, J. Wolfrum: Chem. Phys. Lett.142, 15 (1987)

    Google Scholar 

  10. Y. Takubo, T. Okamoto, N. Komine, M. Yamamoto: Jpn. J. Appl. Phys.26, 416 (1987)

    Google Scholar 

  11. R. Schwarzwald, P. Monkhouse, J. Wolfrum: Chem. Phys. Lett.158, 60 (1989)

    Google Scholar 

  12. H. Bergström, H. Lundberg, A. Persson: Z. Phys. D21, 323 (1991)

    Google Scholar 

  13. J. Bokor, R.R. Freeman, J.C. White, R.H. Storz: Phys. Rev. A24, 612 (1981)

    Google Scholar 

  14. R.P. Lucht, J.T. Salmon, G.B. King, D.W. Sweeney, N.M. Laurendeau: Opt. Lett.8, 365 (1983)

    Google Scholar 

  15. J.E.M. Goldsmith: Opt. Lett.11, 416 (1986)

    Google Scholar 

  16. U. Meier, K. Kohse-Höinghaus, T. Just: Chem. Phys. Lett.126, 567 (1986)

    Google Scholar 

  17. J.T. Salmon, N.M. Laurendeau: Combust. Flame74, 221 (1988)

    Google Scholar 

  18. J. Bittner, K. Kohse-Höinghaus, U. Meier, S. Kelm, T. Just: Combust. Flame71, 41 (1988)

    Google Scholar 

  19. W.K. Bischel, B.E. Perry, D.R. Crosley: Appl. Opt.21, 1419 (1982)

    Google Scholar 

  20. M. Aldén, P. Grafström, H. Edner, S. Svanberg: Opt. Commun.42, 244 (1982)

    Google Scholar 

  21. A.W. Miziolek, M.A. DeWilde: Opt. Lett.9, 390 (1984)

    Google Scholar 

  22. J.E.M. Goldsmith: Appl. Opt.26, 3566 (1987)

    Google Scholar 

  23. U. Meier, J. Bittner, K. Kohse-Höinghaus, T. Just: InProc. 22nd Infl Symp. on Combustion (The Combustion Institute, Pittsburgh, PA 1988) p. 188

    Google Scholar 

  24. U. Westblom, S. Agrup, M. Aldén, P. Cederbalk: Appl. Opt.30, 2990 (1991)

    Google Scholar 

  25. H. Bergström, H. Hallstadius, H. Lundberg, A. Persson: Chem. Phys. Lett.155, 27 (1989)

    Google Scholar 

  26. U. Westblom, P.-E. Bengtsson, M. Aldén: Appl. Phys. B52, 371 (1991)

    Google Scholar 

  27. J.E.M. Goldsmith: InProc. 20th Int'l Symp. on Combustion (The Combustion Institute, Pittsburgh, PA 1984) p. 1331

    Google Scholar 

  28. J.T. Salmon, N.M. Laurendeau: Appl. Opt.26, 2881 (1987)

    Google Scholar 

  29. J.E.M. Goldsmith, R.J.M. Anderson, L.R. Williams: Opt. Lett.15, 78 (1990)

    Google Scholar 

  30. J.E.M. Goldsmith: J. Opt. Soc. Am. B6, 1979 (1989)

    Google Scholar 

  31. U. Westblom, S. Agrup, M. Aldén, H.M. Hertz, J.E.M. Goldsmith: Appl. Phys. B50, 487 (1990)

    Google Scholar 

  32. A. Persson: Lund Rep. At. Phys.93 (1988)

  33. B.R. Marx, J. Simons, L. Allen: J. Phys. B11, 2273 (1978)

    Google Scholar 

  34. I.I. Sobelman:Atomic Spectra and Radiative Transition, Springer Ser. Chem. Phys., Vol. 1 (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  35. J.E.M. Goldsmith, J.A. Miller, R.J.M. Anderson, L.R. Williams: InProc. 23rd Int'l Symp. on Combustion (The Combustion Institute, Pittsburgh, PA 1990) p.1821

    Google Scholar 

  36. M. Aldén, U. Westblom, J.E.M. Goldsmith: Opt. Lett.14, 305 (1989)

    Google Scholar 

  37. S. Agrup: Measurements of quenched fluorescence lifetimes and stimulated emission from flame radicals. Dissertation, Institute of Combustion Physics, Lund Institute of Technology (1994)

  38. S. Agrup, M. Aldén: Appl. Spectrosc.48, 1118 (1994)

    Google Scholar 

  39. G. Smith, D. Crosley: J. Chem. Phys.85, 3896 (1986)

    Google Scholar 

  40. S. Agrup, M. Aldén, Opt. Commun.113, 315 (1994)

    Google Scholar 

  41. J.E.M. Goldsmith: Opt. Lett.10, 116 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrup, S., Ossler, F. & Aldén, M. Measurements of collisional quenching of hydrogen atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence. Appl. Phys. B 61, 479–487 (1995). https://doi.org/10.1007/BF01081277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081277

PACS

Navigation