Skip to main content
Log in

Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning

Part I: Experiments

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We systematically investigate the difference between both actively and passively mode-locked lasers with Gain-at-the-End (GE) and Gain-in-the-Middle (GM) at the example of Nd:YLF lasers. The GE laser generates pulse widths approximately three times shorter than a comparable GM cavity. This is due to enhanced Spatial Hole Burning (SHB) which effectively flattens the saturated gain and allows for a larger lasing bandwidth compared to a GM cavity. We first investigate enhanced SHB by measuring the cw mode spectrum, where we have observed that the mode spacing in GE cavities depends primarily on the crystal length. This was also confirmed for a Nd:LSB crystal, where the pump absorption length was significantly shorter than the crystal length. In mode-locked operation, pulse widths of 4 ps for passive mode locking and 5 ps for active mode locking are demonstrated with GE cavities, compared to 11 ps for passive and 17 ps for active mode locking with GM cavities. Additionally, the time-bandwidth product for the GE cavity is approximately twice the ideal product for a sech2 pulse shape and cannot be improved by dispersion compensation alone, while the GM cavity has nearly ideal time-bandwidth-limited performance. The results for the GM cavity compare well to existing theories taking into account the added effect of pump-power-dependent gain bandwidth which increases the bandwidth of Nd: YLF from 360 to > 500 GHz. In a following paper [1] (called Part II) a rigorous theoretical treatment of the effects due to SHB will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.X. Kärtner, B. Braun, U. Keller: Appl. Phys. B61 (1995) Part II of this paper (in press)

  2. D.J. Kuizenga, A.E. Siegman: IEEE J. QE-6, 694 (1970)

    Google Scholar 

  3. D.J. Kuizenga, A.E. Siegman: IEEE J. QE-6, 709 (1970)

    Google Scholar 

  4. U. Keller, K.J. Weingarten, K.D. Li, D.C. Gerstenberger, P.T. Khuri-Yakub, D.M. Bloom: Opt. Lett.15, 45 (1990)

    Google Scholar 

  5. K.J. Weingarten, D.C. Shannon, R.W. Wallace, U. Keller: Opt. Lett.15, 962 (1990)

    Google Scholar 

  6. G.T. Maker, A.I. Ferguson: Appl. Phys. Lett.54, 403 (1989)

    Google Scholar 

  7. A.A. Godil, A.S. Hou, B.A. Auld, D.M. Bloom: Opt. Lett.16, 1765 (1991)

    Google Scholar 

  8. H.A. Haus, Y. Silberberg: IEEE J. QE-22, 325 (1986)

    Google Scholar 

  9. M. Sargent: Appl. Phys.9, 127 (1976)

    Google Scholar 

  10. C.L. Tang, H. Statz, G. DeMars: J. Appl. Phys.34, 2289 (1963)

    Google Scholar 

  11. C.S. Adams, G.T. Maker, A.I. Ferguson: Opt. Commun.76, 127 (1990)

    Google Scholar 

  12. P.A. Schulz, S.R. Henion: Opt. Lett.16, 1502 (1991)

    Google Scholar 

  13. U. Keller, T.H. Chiu, J.F. Ferguson: CLEO (1993), paper JWA4

  14. B. Braun, K.J. Weingarten, U. Keller: CLEO (1994), paper CTHI1

  15. C.J. Flood, D.R. Walker, H.M.v. Driel: Opt. Lett.20, 58 (1995)

    Google Scholar 

  16. A.E. Siegman:Lasers (Univ. Science Books, Mill Valley, CA 1986)

    Google Scholar 

  17. V.R. Mironenko: Sov. J. Quantum Electron.10, 1203 (1980)

    Google Scholar 

  18. G.J. Kintz, T. Baer: IEEE J. QE-26, 1457 (1990)

    Google Scholar 

  19. J.J. Zayhowski: Opt. Lett.15, 431 (1990)

    Google Scholar 

  20. U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, M.T. Asom: Opt. Lett.17, 505 (1992)

    Google Scholar 

  21. U. Keller: Appl. Phys. B58, 347 (1994)

    Google Scholar 

  22. K.J. Weingarten, B. Braun, U. Keller: Opt. Lett.19, 1140 (1994)

    Google Scholar 

  23. B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, R. Wallenstein: Appl. Phys. B58, 381 (1994)

    Google Scholar 

  24. J.-P. Meyn, T. Jensen, G. Huber: IEEE J. QE-30, 913 (1994)

    Google Scholar 

  25. A.E. Siegman, D.J. Kuizenga: Optoelectron6, 43 (1974)

    Google Scholar 

  26. H.A. Haus: J. Appl. Phys.46, 3049 (1975)

    Google Scholar 

  27. A.A. Kaminskii:Laser Crystals: Their Physics and Properties, 2nd edn. Springer Ser. Opt. Sci., Vol 14 (Springer, Berlin, Heidelberg 1981)

    Google Scholar 

  28. H.A. Haus: IEEE J. QE-11, 323 (1975)

    Google Scholar 

  29. F.X. Kärtner, D. Kopf, U. Keller: J. Opt. Soc. Am. B12, 486 (1995)

    Google Scholar 

  30. W. Koechner:Solid-State Laser Engineering, 4th edn. Springer Ser. Opt. Sci., Vol 1 (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  31. F. Salin, J. Squier, M. Piché: Opt. Lett.16, 1674 (1991)

    Google Scholar 

  32. D. Kopf, K.J. Weingarten, L. Brovelli, M. Kamp, U. Keller: Opt. Lett.19, 2143 (1994)

    Google Scholar 

  33. L.R. Brovelli, U. Keller, T.H. Chiu: J. Opt. Soc. Am. B12, 311 (1995)

    Google Scholar 

  34. E.P. Ippen: Appl. Phys. B58, 159 (1994)

    Google Scholar 

  35. U. Keller, T.H. Chiu, J.F. Ferguson: Opt. Lett.18, 217 (1993)

    Google Scholar 

  36. K. Tamura, J. Jacobson, E.P. Ippen, H.A. Haus, J.G. Fujimoto: Opt. Lett.18, 220 (1993)

    Google Scholar 

  37. F. Krausz, T. Brabec: Opt. Lett.18, 888 (1993)

    Google Scholar 

  38. C.J. Flood, G. Giuliani, H.M.v. Driel: Opt. Lett.15, 218 (1990)

    Google Scholar 

  39. W. Koechner:Solid-State Laser Engineering, 4th edn. Springer Ser. Opt. Sci., Vol 1 (Springer, Berlin, Heidelberg 1996) p. 171

    Google Scholar 

  40. G. Quarles:Lightning Optical, private communication (1994)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, B., Weingarten, K.J., Kärtner, F.X. et al. Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning. Appl. Phys. B 61, 429–437 (1995). https://doi.org/10.1007/BF01081271

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081271

PACS

Navigation