Skip to main content
Log in

Pade approximants (review)

  • Published:
Radiophysics and Quantum Electronics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. G. A. Baker, Jr. and J. L. Gammel, “The Pade approximants,” J. Math. Anal. Appl.,2, No. 1, 21 (1961).

    Google Scholar 

  2. G. A. Baker, Jr., “The theory and application of the Pade approximant method,” in: Advances in Theoretical Physics, K. A. Brueckner (ed.), Vol. 1, N.Y. (1965), p. 1.

  3. J. L. Basdevant, “The Pade approximation and its physical applications,” Fortschr. Phys.,20, No. 5, 283 (1972).

    Google Scholar 

  4. J. Zinn-Justin, “Strong interaction dynamics with Pade approximants,” Phys. Rep.,1C, No. 3, 57 (1971).

    Google Scholar 

  5. G. A. Baker, Jr. and J. L. Gammel (eds.), The Pade Approximants in Theoretical Physics, Academic, New York-London (1970).

    Google Scholar 

  6. P. R. Graves-Morris (ed.), Pade Approximants and Their Applications, Academic, N. Y. (1973).

    Google Scholar 

  7. G. A. Baker, Jr., Essentials of Pade Approximants, Academic, N.Y. (1975).

    Google Scholar 

  8. “Pade approximant method and its applications to mechanics,” in: Lecture Notes in Physics, H. Cabannes (ed.), Vol. 47, Springer (1976).

  9. C. B. Brezinski, “A bibliography on Pade approximation and some related matters,” ibid. [8] in: Lecture Notes in Physics, H. Cabannes (ed.), Vol. 47, Springer (1976), p. 245.

  10. R. H. Kraichnan, “Turbulent diffusion: evaluation of primitive and renormalized perturbation series by Pade approximants and by expansion of Stieltjes transforms into contributions from continuous orthogonal functions,” ibid. [5], p. 129.

    Google Scholar 

  11. J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, 4th ed., American Mathematical Society (1966).

  12. M. Barnsley, “The bounding properties of multipoint Pade approximant to a series of Stieltjes on the real line,” J. Math. Phys.,14, No. 3, 299 (1973).

    Google Scholar 

  13. S. T. Epstein and M. F. Barnsley, “A variational approach to the theory of multipoint Pade approximants,” J. Math. Phys.,14, No. 3, 314 (1973).

    Google Scholar 

  14. L. Wuytack “Applications of Pade approximant in numerical analysis,” in: Approximation Theory, R. Schaback and K. Scherer (eds.), Springer (1976), p. 453.

  15. W. G. Gragg, “The Pade table and its relation to certain algorithms of numerical analysis,” SIAM Rev.,14, No. 1, 1 (1972).

    Google Scholar 

  16. J. Nutall, “Convergence of Pade approximants for the Bethe-Salpeter amplitude,” Phys. Rev.,157, 1312 (1967).

    Google Scholar 

  17. J. L. Gammel, “Review of two recent generalizations of Pade approximants,” ibid. [6], p. 3.

    Google Scholar 

  18. C. Alabiso and P. Butera, “N-variable rational approximants and method of moments,” J. Math. Phys.,16, No. 4, 840 (1975).

    Google Scholar 

  19. J. S. R. Chisholm and R. Hughes-Jones, “Relative scale covariance of N-variable approximants,” Proc. R. Soc. London, Ser. A,344, 465 (1975).

    Google Scholar 

  20. J. S. R. Chisholm, “Multivariate approximants with branch points. I. Diagonal approximants,” Proc. R. Soc. London, Ser. A,358, No. 1694, 351 (1977).

    Google Scholar 

  21. V. L. Danilov et al., Mathematical Analysis [in Russian], GFML, Moscow (1961).

    Google Scholar 

  22. A. Ya. Khinchin, Continued Fractions [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  23. C. Swain, “Continued fraction solution to systems of linear equation,” J. Phys.,A9, No. 11, 1811 (1976).

    Google Scholar 

  24. C. R. Garibotti and J. A. Mignaco “Approximate solution of bound state problems through continued fractions,” Z. Phys.,A274, No. 1, 33 (1975).

    Google Scholar 

  25. J. A. Mignaco and J. E. Miraglia, “On the approximate solution through continued fractions of the Schrödinger equation with central potentials for positive energies,” Z. Phys.,A280, No. 1, 1 (1977).

    Google Scholar 

  26. A. F. Nikiforov and V. B. Uvarov, Principles of the Theory of Special Functions, [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  27. J. Nutall, “Variational principles and Pade approximants,” ibid. [6] p.29.

    Google Scholar 

  28. J. Nutall, “The connection of Pade approximants with stationary variational principles and convergence of certain Pade approximants,” ibid. [5], p. 219.

    Google Scholar 

  29. E. J. Brändas and D. A. Micka, “Variational methods in the wave operator formalism: applications in variation perturbation theory and the theory of energy bounds,” J. Math. Phys.,13, No. 2, 155 (1972).

    Google Scholar 

  30. D. Bessis, L. Epele, and M. Villani, “Summation of regularized perturbative expansions for singular interaction,” J. Math. Phys.,15, No. 12, 2071 (1974).

    Google Scholar 

  31. D. Bessis and M. Villani, “Perturbative-variational approximations to the spectral properties of semibounded Hilbert space operators based on the moment problem with finite or diverging moments,” J. Math. Phys.,16, No. 3, 462 (1975).

    Google Scholar 

  32. D. Bessis, P. Monssa, and M. Villani, “Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics,” J. Math. Phys.,16, No. 11, 2318 (1975).

    Google Scholar 

  33. D. Bessis, “Construction of variational bounds for the N-body eigenstate problem by method of Pade approximants,” ibid. [8] in: Lecture Notes in Physics, H. Cabannes (ed.), Vol. 47, Springer (1976), p. 17.

  34. J. S. R. Chisholm, “Solution of linear integral equations using Pade approximants,” J. Math. Phys.,4, No. 12, 1506 (1963).

    Google Scholar 

  35. R. C. Brunet, “An approximant for democratic representation of all Born terms,” J. Math. Phys.,17, No. 5, 677 (1976).

    Google Scholar 

  36. G. A. Baker, Jr., J. L. Gammel, and J. G. Wills, “An investigation of the applicability of the Pade approximant method,” J. Math. Anal. Appl.,2, 405 (1961).

    Google Scholar 

  37. G. A. Baker, Jr. and P. R. Graves-Morris, “Convergence of rows of the Pade table,” J. Math. Anal. Appl.,57, No. 2, 323 (1977).

    Google Scholar 

  38. G. A. Baker, Jr., “Convergence of Pade approximants using the solution of linear functional equations,” J. Math. Phys.,16, No. 4, 813 (1975).

    Google Scholar 

  39. S. Tani, “Pade approximants in potential scattering,” Phys. Rev.,139B, No. 4, 1011 (1965).

    Google Scholar 

  40. N. I. Akhiezer, The Classical Problem of Moments [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  41. Yu. V. Vorob'ev, The Method of Moments in Applied Mathematics [in Russian], Fizmatgiz, Moscow (1958).

    Google Scholar 

  42. D. Masson, “Hilbert space and Pade approximants,” ibid [5], p. 197.

    Google Scholar 

  43. M. F. Barnsley and P. D. Robinson, “Bivariational bounds,” Proc. R. Soc. London, Ser. A,338, No. 1615, 527 (1974).

    Google Scholar 

  44. M. F. Barnsley, “Correction terms for Pade approximants,” J. Math. Phys.,16, No. 4, 918 (1975).

    Google Scholar 

  45. M. F. Barnsley and G. A. Baker, Jr., “Bivariational bounds in a complex Hilbert space and correction terms for Pade approximants,” J. Math. Phys.,17, No. 6, 1019 (1976).

    Google Scholar 

  46. M. F. Barnsley, “Pointwise bounds for eigenfunction of one-electron systems” Phys. Lett. A,53, No. 2, 124 (1975).

    Google Scholar 

  47. M. F. Barnsley and P. D. Robinson, “Bivariational bounds of two-point boundary-value problems,” J. Math. Anal. Appl.,56, No. 1, 172 (1976).

    Google Scholar 

  48. V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  49. U. Frisch, “Wave propagation in random media,” in: Probabilistic Methods in Applied Mathematics, A. T. Bharucha-Reid (ed.), Academic, New York-London (1968), p. 76.

    Google Scholar 

  50. L. A. Apresyan, “Methods of statistical perturbation theory (review),” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,17, No. 2, 165 (1974).

    Google Scholar 

  51. D. Bessis, “Pade approximants in quantum field theory,” ibid. [6] p. 275.

    Google Scholar 

  52. O. G. Nalbandyan and V. I. Tatarskii, “Comparison of diagram and analytical methods for the approximate solution of linear stochastic equations,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,20, No. 4, 549 (1977).

    Google Scholar 

  53. O. V. Muzychuk, “The construction of an accurate solution of Dyson's equation for Green's mean function,” Teor. Mat. Fiz.,28, No. 3, 371 (1976).

    Google Scholar 

  54. Yu. E. Kuzovlev and G. N. Bochkov, “Operator methods of analyzing stochastic non-Gaussian processes and systems,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,20, No. 10, 1505 (1977).

    Google Scholar 

  55. U. Frisch and R. Bourret, “Parastochastics,” J. Math. Phys.,11, No. 2, 364 (1970).

    Google Scholar 

  56. R. C. Bourret, “Quantized fields as random classical fields,” Phys. Lett.,12, No. 4, 323 (1964).

    Google Scholar 

  57. R. C. Bourret, “Examples of stochastic systems equivalent to second quantized systems,” Can. J. Phys.,44, No. 10, 2519 (1966).

    Google Scholar 

  58. L. A. Apresyan, “Equations for the mean values of linear stochastic operators which depend on Markov random processes,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,20, No. 11, 1161 (1978).

    Google Scholar 

  59. G. Fogli, M. F. Pellicoro, and M. Villani, “An approach to radiation correction in QED in the frame-work of the Pade method,” Nuovo Cimento,A11, No. 11, 153 (1972).

    Google Scholar 

  60. G. Fogli, M. F. Pellicoro, and M. Villani, “A summation method for a class of series with divergent terms,” Nuovo Cimento,A6, No. 1, 79 (1971).

    Google Scholar 

  61. D. L. Hunter and G. A. Baker, Jr., “Methods of series analysis,” Phys. Rev.,B7, No. 7, 3346 (1973).

    Google Scholar 

  62. M. E. Fischer and W. J. Camp, “Estimation of spectra from moments — application to Hubbard's model,” Phys. Rev.,B5, No. 9, 3730 (1972).

    Google Scholar 

  63. M. E. Fisher, “The theory of equilibrium critical phenomena,” Rep. Prog. Phys.,30, Pt. II, 615 (1967).

    Google Scholar 

  64. M. E. Fisher, “Critical phenomena — the role of series expansion,”, ibid. [8] in: Lecture Notes in Physics, H. Cabannes (ed.), Vol. 47, Springer (1976), p. 181.

  65. G. A. Baker, Jr., “Convergent bounding approximation procedures with application to the ferromagnetic Ising model,” Phys. Rev.,161, No. 2, 434 (1967).

    Google Scholar 

  66. G. A. Baker, Jr., “Converging bounds for the free energy in certain statistical mechanical problems,” J. Math. Phys.,13, No. 12, 1862 (1972).

    Google Scholar 

  67. J. L. Basdevant, D. Bessis, and J. Zinn-Justin, “Pade approximants in strong interactions, two-body pion and caon systems,” Nuovo Cimento,60A, No. 2, 185 (1969).

    Google Scholar 

  68. M. Pusterla, “Model field theories and Pade approximants,” ibid. [6], p. 299.

    Google Scholar 

  69. G. Turchetti, “Pade approximants in nucleon dynamics” ibid. [6] 313.

    Google Scholar 

  70. J. L. Gammel and M. T. Menzel, “Bethe-Salpeter equation for nucleon-nucleon scattering matrix Pade approximants,” Phys. Rev.,D11, No. 4, 963 (1975).

    Google Scholar 

  71. A. Gerstein et al., “Matrix Pade approximants and the Bethe-Salpeter equation of N-N-interaction,” Phys. Rev.,D13, No. 4, 1140 (1976).

    Google Scholar 

  72. J. L. Gammel and F. A. McDonald, “Application of Pade approximants to scattering theory,” Phys. Rev.,142, No. 4, 1245 (1966).

    Google Scholar 

  73. C. R. Garibotti, “Pade approximants in potential scattering,” ibid. [6] p. 253.

    Google Scholar 

  74. C. R. Garibotti and M. Villani, “Pade approximants and the Jost-function,” Nuovo Cimento,61A, No. 4, 747 (1969).

    Google Scholar 

  75. R. W. Haymaker and L. Schlessinger “Pade approximants as a computational tool for solving the Schrödinger and Bethe-Salpeter equations,” ibid. [5], p. 257.

    Google Scholar 

  76. J. A. Tjen and H. M. Nieland, “Solutions of the Bethe-Salpeter equations by means of Pade approximants,” ibid. [5], p. 289.

    Google Scholar 

  77. G. Turchetti, “Variational principles and matrix approximants in potential theory,” Lett. Nuovo Cimento,15, No. 5, 129 (1976).

    Google Scholar 

  78. L. P. Benofy, J. L. Gammel, and P. Meri, “Off-shell momentum as a variational parameter in calculations of matrix Pade approximants in potential scattering,” Phys. Rev.,D13, No. 11, 3111 (1976).

    Google Scholar 

  79. D. Bessis, P. Meri, and G. Turchetti, “Variational bounds from matrix Pade approximants in potential scattering,” Phys. Rev.,D15, No. 8, 2345 (1977).

    Google Scholar 

  80. A. K. Common and T. Stacy, “Legendre — Pade approximants and their application in potential scattering,” J. Phys.,A11, No. 2, 259 (1978).

    Google Scholar 

  81. A. K. Common and T. Stacey, “The convergence of Legendre — Pade approximants to the Coulomb and other scattering amplitudes,” J. Phys.,A11, No. 2, 275 (1978).

    Google Scholar 

  82. C. R. Garibotti and F. F. Grinstein, “Summation of partial wave expansion in the scattering by longrange potentials,” J. Math. Phys.,19, No. 11, 821 (1978).

    Google Scholar 

  83. M. Scardon, S. Weinberg, and J. Wright, “Functional analysis and scattering theory,” Phys. Rev.,135B, No. 1, 202 (1964).

    Google Scholar 

  84. J. J. Loeffel et al., “Pade approximants and the anharmonic oscillator,” Phys. Lett.,B30, No. 9, 956 (1969).

    Google Scholar 

  85. S. Graffi, V. Grecci, and B. Simon, “Borel summability: application to anharmonic oscillator,” Phys. Lett.,B32, No. 7, 631 (1970).

    Google Scholar 

  86. A. T. Amos, “Pade approximants and Rayleigh—Schrödinger perturbation theory,” J. Phys.,B11, No. 12, 2053 (1978).

    Google Scholar 

  87. S. Wilson, D. M. Silver, and R. A. Farrel, “Special invariance properties of the [N+1/N] Pade approximants in Rayleigh—Schrödinger perturbation theory,” Proc. R. Soc. London, Ser. A,356, No. 1686, 363 (1977).

    Google Scholar 

  88. G. L. Bendazzoli, G. Goshinski, and G. Orland, “Pade approximants and inner projection in the Brillouin—Wigner perturbation scheme for He-like ions,” Phys. Rev.,A2, No. 1, 2 (1970).

    Google Scholar 

  89. E. Brändas and O. Goshinskii, “Variational-perturbation expansions and Pade approximants to the energy,” Phys. Rev.,A1, No. 3, 552 (1970).

    Google Scholar 

  90. A. Bove et al., “Functional integration, Pade approximants and the Schrödinger equation,” J. Math. Phys.,16, No. 2, 268 (1975).

    Google Scholar 

  91. B. Nelson “Feynman integrals and the Schrödinger equation,” J. Math. Phys.,5, No. 3, 332 (1964).

    Google Scholar 

  92. J. Killingbeck “Quantum-mechanical perturbation theory,” Rep. Prog. Phys.,40, No. 9, 963 (1977).

    Google Scholar 

  93. P. W. Langhoff and M. Karplus, “Application of Pade approximants to dispersion force and optical polarizability computations,” ibid. [5], p. 41.

    Google Scholar 

  94. M. Barnsley, “Bounds of dynamical polarizabilities at high frequencies,” Mol. Phys.,29, No. 5, 1377 (1975).

    Google Scholar 

  95. P. Ortoleva, “Dynamic Pade approximants in the theory of periodic and chaotic chemical center waves,” J. Chem. Phys.,69, No. 1, 300 (1978).

    Google Scholar 

  96. M. J. Sobhy, “Applications of Pade approximants in electrical network problems,” ibid. [6], p. 321.

    Google Scholar 

Download references

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 22, No. 6, pp. 653–674, June, 1979.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apresyan, L.A. Pade approximants (review). Radiophys Quantum Electron 22, 449–466 (1979). https://doi.org/10.1007/BF01081220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081220

Keywords

Navigation