Skip to main content
Log in

Longitudinal structure formation in a nonlinear resonator

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A fiber ring resonator, synchronously driven by picosecond pulses, exhibits a spatiotemporal instability. A rapid modulation in the pulse envelope is spontaneously formed and evolves dynamically. This structure may be called one-dimensional optical turbulence. Single-shot detection of these structures is not viable. We report how to obtain experimental information which, when combined with numerical simulation, provides an adequate picture of the processes at work. Intrapulse correlations are studied; they reveal clear differences between dispersion of either sign. Also, they reveal the formation of soliton-like structures in the turbulent regime. A criterion is given that allows the prediction of the degree of complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Zakharov, A. B. Shabat: Soviet Phys. JETP34, 62 (1972)

    Google Scholar 

  2. Y. Silberberg: Opt. Lett.15, 1282 (1990)

    Google Scholar 

  3. G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, F. Mitschke: Phys. Rev. A52, 830 (1995)

    Google Scholar 

  4. D. W. McLaughlin, J. V. Moloney, A. C. Newell: Phys. Rev. Lett.54, 681 (1985)

    Google Scholar 

  5. F. Mitschke, G. Steinmeyer, M. Ostermeyer, C. Fallnich, H. Welling: Appl. Phys. B56, 335 (1993)

    Google Scholar 

  6. G. Sucha, S. R. Bolton, S. Weiss, D. S. Chemla:Conference on Lasers and Electro-Optics, OSA Techn. Dig. Sen, Vol. 11 (Optical Soc. Am., Washington 1993) p. 146

    Google Scholar 

  7. H. G. Schuster:Deterministic Chaos (VCH, Weinheim 1984) p. 12

    Google Scholar 

  8. G. P. Agrawal:Nonlinear Fiber Optics (Academic, Boston 1989)

    Google Scholar 

  9. G. Steinmeyer, D. Jaspert, F. Mitschke: Opt. Commun.104, 379 (1994)

    Google Scholar 

  10. K. Ikeda: Opt. Commun.30, 257 (1979); K. Ikeda, H. Daido, O. Akimoto: Phys. Rev. Lett.45, 709 (1980); K. Ikeda, K. Kondo, O. Akimoto: Phys. Rev. Lett.49, 1467 (1982); K. Ikeda: J. Phys. (Paris)44, C2-183 (1983)

    Google Scholar 

  11. H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, M. Matsuoka: Phys. Rev. Lett.50, 109 (1983)

    Google Scholar 

  12. R. Vallée: Opt. Commun.81, 419 (1991)

    Google Scholar 

  13. M. Nakazawa, K. Suzuki, H.A. Haus: Phys. Rev. A15, 5193 (1988)

    Google Scholar 

  14. M. B. van der Mark, J. M. Schins, A. Lagendijk: Opt. Commun.98, 120 (1993)

    Google Scholar 

  15. F. Mitschke, G. Steinmeyer, A. Buchholz, M. Hänsel: InProc. 2nd Experimental Chaos Conference, ed. by W. L. Ditto, L. Pecora, S. T. Vohra, M. Shlesinger, M. L. Spano (World Scientific, Singapore 1995) p. 53

    Google Scholar 

  16. G. T. Harvey, L. F. Mollenauer: Opt. Lett.18, 107 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmeyer, G., Mitschke, F. Longitudinal structure formation in a nonlinear resonator. Appl. Phys. B 62, 367–374 (1996). https://doi.org/10.1007/BF01081198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081198

PACS

Navigation