Skip to main content
Log in

Wide- and narrow-band saturated fluorescence measurements of hydroxyl concentration in premixed flames from 1 bar to 10 bar

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have studied the use of wide-band detection in conjunction with saturation of a rovibronic transition of OH within itsA 2 σ +X 2∏(0,0) band. For wide-band detection, in which fluorescence is detected from the entire excited rotational manifold, the fluorescence yield is sensitive to collisions in two ways. First, it is sensitive to the ratio of rate coefficients describing rotational energy transfer and electronic quenching; this ratio determines the number of neighboring rotational levels that are populated during the laser pulse. Second, the fluorescence yield can vary with the total collisional rate coefficient; only after a sufficient number of collisions, corresponding to ≈ 2.5 ns in an atmospheric flame, does the rotational manifold reach steady state. We also compare measurements employing wide-band (detecting theR 1 andR 2 branches) and narrow-band (detecting a single transition) saturated fluorescence of OH. Over a wide range of conditions — obtained by varying the equivalence ratio, temperature, N2 dilution, and pressure — the wide- and narrow-band fluorescence techniques compare well. Given this good agreement, wide-band saturated fluorescence could be especially useful for analyzing atmospheric flames with XeCl-excimer lasers; one can potentially obtain 2—D images of OH which have a high signal-to-noise ratio and a reduced sensitivity to laser irradiance and quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Piepmeier: Spectrochim. Acta B27, 431 (1972)

    Google Scholar 

  2. J.W. Daily: Appl. Opt.16, 568 (1977)

    Google Scholar 

  3. R.P. Lucht, D.W. Sweeney, N.M. Laurendeau: Combust. Flame50, 189 (1983)

    Google Scholar 

  4. K. Kohse-Höinghaus, W. Perc, J. Just: InProc. 20th Symposium (Int'l) on Combustion (Combustion Institute, Pittsburgh, PA 1984) pp. 1177–1185

    Google Scholar 

  5. J.T. Salmon, R.P. Lucht, D.W. Sweeney, N.M. Laurendeau: InProc. 20th Symposium (Int'l) on Combustion (Combustion Institute, Pittsburgh, PA 1984) pp. 1187–1193

    Google Scholar 

  6. J.T. Salmon, N.M. Laurendeau: Appl. Opt.24, 1313 (1985)

    Google Scholar 

  7. P. Desgroux, M.J. Cottereau: Appl. Opt.30, 90 (1991)

    Google Scholar 

  8. R.P. Lucht, D.W. Sweeney, N.M. Laurendeau: Combust. Sci. Technol.42, 259 (1985)

    Google Scholar 

  9. C.D. Carter, G.B. King, N.M. Laurendeau: Combust. Sci. Technol.78, 247 (1991)

    Google Scholar 

  10. C.D. Carter, G.B. King, N.M. Laurendeau: Appl. Opt.31, 1511 (1992)

    Google Scholar 

  11. P. Desgroux, E. Domingues, M.J. Cottereau: Appl. Opt.31, 2831 (1992)

    Google Scholar 

  12. A.P. Baronavski, J.R. McDonald: Appl. Opt.16, 1897 (1977)

    Google Scholar 

  13. L. Pasternack, A.P. Baronavski, J.R. McDonald: J. Chem. Phys.69, 4830 (1978)

    Google Scholar 

  14. P.A. Bonczyk, J.A. Shirley: Combust. Flame34, 253 (1979)

    Google Scholar 

  15. R.P. Lucht, N.M. Laurendeau: Appl. Opt.18, 856 (1979)

    Google Scholar 

  16. R.P. Lucht, D.W. Sweeney, N.M. Laurendeau: Appl. Opt.19, 3295 (1980)

    Google Scholar 

  17. M. Schäfer, W. Ketterle, J. Wolfrum: Appl. Phys. B52, 341 (1991)

    Google Scholar 

  18. R.W. Scheffer, M.N. Namazian, J. Kelly: Opt. Lett.16, 858 (1991)

    Google Scholar 

  19. J.R. Reisel, C.D. Carter, N.M. Laurendeau, M.C. Drake: Combust. Sci. Technol.91, 271 (1993)

    Google Scholar 

  20. C.D. Carter, J.T. Salmon, G.B. King, N.M. Laurendeau: Appl. Opt.26, 4551 (1987)

    Google Scholar 

  21. A. Hindmarsh: ACM SIGNUM Newslett.4, 4 (1980)

    Google Scholar 

  22. R.P. Lucht, D.W. Sweeney, N.M. Laurendeau: Appl. Opt.25, 4086 (1986)

    Google Scholar 

  23. K. Kohse-Höinghaus, J.B. Jeffries, R.A. Copeland, G.P. Smith, D.R. Crosley: Chem. Phys. Lett.152, 160 (1988)

    Google Scholar 

  24. G. Zizak, J.A. Lanauze, J.D. Winefordner: Combust. Flame65, 203 (1986)

    Google Scholar 

  25. N.L. Garland, D.R. Crosley: InProc. 21st Symposium (Int'l) on Combustion (Combustion Institute, Pittsburgh, PA 1986) pp.1693–1702

    Google Scholar 

  26. T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, M. Ito: Chem. Phys.84, 151 (1984)

    Google Scholar 

  27. Aa. S. Sudbø, M.M.T. Loy: J. Chem. Phys.76, 3646 (1982)

    Google Scholar 

  28. J.A. Gray, J.L. Durant, P.H. Paul, J.W. Thoman, Jr.: AIAA paper 93-0924 (1993)

  29. G. Zizak, G.A. Petrucci, C.L. Stevenson, J.D. Winefordner: Appl. Opt.30, 5270 (1991)

    Google Scholar 

  30. K.J. Rensberger, J.B. Jeffries, D.R. Crosley: J. Chem. Phys.90, 2174 (1989)

    Google Scholar 

  31. D.H. Campbell: Appl. Opt.23, 689 (1984)

    Google Scholar 

  32. C.D. Carter, G.B. King, N.M. Laurendeau: Rev. Sci. Instrum.60, 2606 (1989)

    Google Scholar 

  33. J.M. Harris, F.E. Lytle, T.C. McCain: Anal. Chem.48, 2095 (1980)

    Google Scholar 

  34. C. Ferguson, J.C. Keck: Combust. Flame34, 85 (1979)

    Google Scholar 

  35. R.K. Lengel, D.R. Crosley: J. Chem. Phys.67, 2085 (1977)

    Google Scholar 

  36. D. Stepowski, M.J. Cottereau: J. Chem. Phys.74, 6674 (1981)

    Google Scholar 

  37. J. Burris, J.J. Butler, T.J. McGee, W.S. Heaps: Chem. Phys.151, 233 (1991)

    Google Scholar 

  38. A. Jörg, U. Meier, R. Kienle, K. Kohse-Höinghaus: Appl. Phys. B.55, 305 (1992)

    Google Scholar 

  39. E.C. Rea, Jr., A.Y. Chang, R.K. Hanson: J. Quant. Spectrosc. Radiat. Transfer37, 117 (1987)

    Google Scholar 

  40. E.C. Rea, Jr., A.Y. Chang, R.K. Hanson: J. Quant. Spectrosc. Radiat. Transfer41, 29 (1989)

    Google Scholar 

  41. J.R. Reisel, N.M. Laurendeau: Combust. Sci. Technol. (in press)

  42. W. Ketterle, M. Schäfer, A. Arnold, J. Wolfrum: Appl. Phys. B54, 109 (1992)

    Google Scholar 

  43. N.M. Laurendeau, J.E.M. Goldsmith: Combust. Sci. Technol.63, 139 (1989)

    Google Scholar 

  44. I. Chidsey, D.R. Crosley: J. Quant. Spectrosc. Radiat. Transfer23, 187 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, C.D., Laurendeau, N.M. Wide- and narrow-band saturated fluorescence measurements of hydroxyl concentration in premixed flames from 1 bar to 10 bar. Appl. Phys. B 58, 519–528 (1994). https://doi.org/10.1007/BF01081084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081084

PACS

Navigation