Skip to main content
Log in

Effects of different approximations in 2D-front-scale models on cross frontal structures (weakv ag -case)

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Nonlinear interactions and feedbacks in frontal dynamics are studied with two-dimensional quasigeostrophic, semigeostrophic and primitive equation models for given cases of moderate surface cold fronts. According to the degree of approximation these feedbacks are in effect as a result of geostrophic and ageostrophic advection configuring the further frontal development and the associated energy-transfers between the geostrophic and the ageostrophic scales. The most prominent feedback processes, including the feedback connected with the ageostrophic along-front windv ag , are theoretically reviewed. In cases of smallv ag values, their effects on form and horizontal scale of the frontal secondary circulation are discussed by comparing the products of different model versions and the cross-frontal spectral analysis of the ageostrophic wind fields. To scrutinize the role played by thev ag -field, further experiments were based on a hierarchy ofv ag -substitutes parameterized by the momentum equation of the crossfrontal winddu/dt=fv ag . Tentative results show the tendency towards very localized effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. G., Hoskins, B. J., 1978: Energy spectra predicted by semi-geostrophic theories of frontogenesis.J. Atmos. Sci.,35, 509–512.

    Google Scholar 

  • Blumen, B., 1980: A Comparison between the Hoskins-Bretherton model of frontogenesis and the analysis of an intense surface frontal zone.J. Atmos. Sci.,37, 64–77.

    Google Scholar 

  • Davies, H. C., Müller, J. C., 1988: Detailed description of deformation-induced semigeostrophic frontogenesis.Quart. J. Roy. Meteor. Soc.,114, 1201–1219.

    Google Scholar 

  • Egger, J., Schmid, S., 1988: Elimination of spurious inertial oscillations in Boundary-Layer Models with time dependent geostrophic winds.Bound.-Layer Meteor.,43, 393–401.

    Google Scholar 

  • Gall, R. L., Williams, R. T., Clark, T. L., 1987: On the minimum scale of surface fronts.J. Atmos. Sci.,44, 2562–2574.

    Google Scholar 

  • Garner, S. T., 1989a: Fully Lagrangian numerical solutions of unbalanced frontogenesis and frontal collapse.J. Atmos. Sci.,46, 717–739.

    Google Scholar 

  • Garner, S. T., 1989b: Comments on “On a theory of the evolution of surface cold fronts”.J. Atmos. Sci.,46, 1872–1873.

    Google Scholar 

  • Garner, S. T., 1991: The nongeostrophic structure of baroclinic waves and its relation to fronts and jet streaks.J. Atmos. Sci.,48, 147–162.

    Google Scholar 

  • Hoinka, K. P., Volkert, H., Heimann, D., 1988: The German front experiment 1987: Observations and preliminary results. Deutsche Forschungs-und Versuchsanstalt für Luft-und Raumfahrt, Oberpfaffenhofen, Forschungsbericht DFVLR-FB 88-21.

  • Hoskins, B., 1975: The geostrophic momentum approximation and the semigeostrophic equations,J. Atmos. Sci.,32, 233–242.

    Google Scholar 

  • Hoskins, B., 1978: Section B: Baroclinic instability and frontogenesis. In: Roberts, P. H., Soward, A. M. (eds.)Rotating Fluids in Geophysics. Academic Press, London, pp. 171–203.

    Google Scholar 

  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis.Ann. Rev. Fluid Mech.,14, 131–151.

    Google Scholar 

  • Hoskins, B. J., Bretherton, F. P., 1972: Atmospheric frontogenesis models: Mathematical formulation and solution.J. Atmos. Sci.,29, 11–37.

    Google Scholar 

  • Hoskins, B., Draghici, I., 1977: The forcing of ageostrophic motion according to the semigeostrophic equations in an isentrophic coordinate model.J. Atmos. Sci.,34, 1859–1867.

    Google Scholar 

  • Hsie, E. Y., Anthes, R. A., Keyser, D., 1984: Numerical simulation of frontogenesis in a moist atmosphere.J. Atmos. Sci.,41, 2581–2594.

    Google Scholar 

  • Keyser, D., Pecnick, M. J., 1985a: A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear.J. Atmos. Sci.,42, 1259–1282.

    Google Scholar 

  • Keyser, D., Pecnick, M. J., 1985b: Diagnosis of ageostrophic circulation in a two-dimensional primitive equation model of frontogenesis.J. Atmos. Sci.,42, 1283–1305.

    Google Scholar 

  • Keyser, D., Pecnick, M. J., 1987: The Effect of along-front temperature variation in a two-dimensional primitive equation model of surface frontogenesis.J. Atmos. Sci.,44, 511–604.

    Google Scholar 

  • Kerkmann, J., 1990: Simulation orographisch beeinflusster fronten mit einem Front-Skala-Model, Teil 2. Dissertation, Meteorologisches Institut der Universität Bonn.

  • Keuler, K., 1989: Simulation orographisch beeinflusster Fronten mit einem Front-Skala-Model, Teil 1. Dissertation, Meteorologisches Institut der Universität Bonn.

  • Levy, G., Bretherton, C. S., 1987: On a theory of the evolution of surface cold fronts.J. Atmos. Sci.,44, 3413–3418.

    Google Scholar 

  • Ley, B. E., Peltier, W. R., 1978: Wave generation and frontal collapse.J. Atmos. Sci.,35, 3–17.

    Google Scholar 

  • Montgomery, M. T., Farrell, B. F., 1990: Dry surface frontogenesis arising from interior potential vorticity perturbations in a semigeostrophic model.J. Atmos. Sci.,47, 2837–2852.

    Google Scholar 

  • Müller, J. C., 1989: Semigeostrophische Entwicklung von Fronten und Störungen in der unteren Atmosphäre. Dissertation Nr. 8878, Eidgenössische Technische Hochschule Zürich.

  • Ogura, Y., Portis, D., 1982: Structure of the cold front observed in SESAM-AVE III and its comparison with the Hoskins-Bretherton frontogenesis model.J. Atmos. Sci.,39, 2773–2792.

    Google Scholar 

  • Orlanski, I., Ross, B. B., 1977: The circulation associated with a cold front. Part I: Dry case.J. Atmos. Sci.,34, 1619–1633.

    Google Scholar 

  • Orlanski, I., Ross, B. B., 1984: The evolution of an observed cold front. Part II: Mesoscale dynamics.J. Atmos. Sci.,41, 1669–1703.

    Google Scholar 

  • Orlanski, I., Ross, B. B., Polinsky, L., Shaginaw, R., 1985: Advances in the theory of atmospheric fronts.Adv. Geophys.,28b, 223–252.

    Google Scholar 

  • Reeder, M. J., Keyser, D., 1988: Balanced and unbalanced upper-level-frontogenesis.J. Atmos. Sci.,45, 3366–3386.

    Google Scholar 

  • Reeder, M. J., Smith, R., 1987: A study of frontal dynamics with application of the Australian summertime “cool change”.J. Atmos. Sci.,44, 687–705.

    Google Scholar 

  • Sanders, F., 1955: An Investigation of the structure and dynamics of an intense surface frontal zone.J. Meteor.,12, 542–552.

    Google Scholar 

  • Shapiro, R., 1971: The use of linear filtering as a parameterization of atmospheric diffusion.J. Atmos. Sci.,28, 523–531.

    Google Scholar 

  • Thorpe, A. J., Clough, S. A., 1991: Mesoscale dynamics of cold fronts: structures described by dropsoundings in fronts 87.Quart. J. Roy. Meteor. Soc.,117, 903–941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriel, A., Schilling, H.D. Effects of different approximations in 2D-front-scale models on cross frontal structures (weakv ag -case). Meteorl. Atmos. Phys. 51, 1–24 (1993). https://doi.org/10.1007/BF01080877

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01080877

Keywords

Navigation