Advertisement

Application of the Buffon needle problem and its extensions to parallel-line search sampling scheme

  • C. F. Chung
Article

Abstract

Buffon's needle problem is generalized to a grid of unequally spaced parallel strips and a needle with a preferred orientation. This generalization is useful to determine the spacing of flight lines for locating anomalies by airborne geophysical surveys.

Key words

Buffon needle problem geometric probability geophysical surveys unequally spaced parallel strips preferred orientation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agos, W. G., 1955, Line spacing effect and determination of optimum spacing illustrated by Marmora, Ontario magnetic anomaly: Geophysics, v. 20, no. 4, p. 871–885.Google Scholar
  2. Grasty, R. L., Richardson, K. A., and Knight, G. B., 1977, Airborne detection of small radioactive sources,in Aerial techniques for environmental monitoring: Amer. Nuclear Soc., Nevada, p. 182–192.Google Scholar
  3. Grasty, R. L., Kosanke, K. L., and Foote, R. S., 1979, Fields of view of airborne gamma-ray detectors: Geophysics, v. 44, no. 8, p. 1447–1457.Google Scholar
  4. Johnson, N. I. and Kotz, S., 1970, Continuous univariate distributions 2: Houghton Mifflin, Boston, Mass., 306 p.Google Scholar
  5. Kendall, M. G. and Moran, P. A. P., 1963, Geometrical probability: Griffin, London, 125 p.Google Scholar
  6. Marriot, F. H. C., 1969, Associated directions: Biometrics, v. 25, no. 4, p. 775–776.Google Scholar
  7. Marriot, F. H. C., 1971, Buffon's problems for non-random distribution: Biometrics, v. 27, no. 1, p. 233–235.Google Scholar
  8. McCammon, R. B., 1977, Target intersection probabilities for parallel-line and continuous grid types of search: Math. Geol., v. 9, no. 4, p. 369–382.Google Scholar
  9. Santalo, L. A., 1976, Integral geometry and geometric probability: Addison-Wesley, Mass., 404 p.Google Scholar
  10. Solomon, H., 1978, Geometric probability: Soc. Indust. Appl. Math., Penn., 175 p.Google Scholar
  11. Watson, G. S., 1978, Characteristic statistical problems of stochastic geometry,in R. E. Miles and J. Serra, (eds.), Geometrical probability and biological structures: Buffon's 200th Anniversary: Springer-Verlag, N.Y., p. 215–233.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • C. F. Chung
    • 1
  1. 1.Geological Survey of CanadaOttawaCanada

Personalised recommendations