Skip to main content
Log in

Functional models for representations of current algebras and semi-infinite Schubert cells

  • Published:
Functional Analysis and Its Applications Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. Schechtman and A. Varchenko, “Arrangements of hyperplanes and Lie algebra homology,” Invent. Math.,106, 139–194 (1991).

    Google Scholar 

  2. A. A. Beilinson and V. A. Ginzburg, “Infinitesimal structure of moduli spaces ofG-bundles,” Duke Math. J. (IMRN), No. 4, 63–74 (1992).

    Google Scholar 

  3. J. Lepowsky and M. Primc, “Structure of the standard modules for the affine Lie algebraA (1)1 ,” Contemporary Mathematics, Vol. 46, AMS, Providence (1985).

    Google Scholar 

  4. V. G. Kac, Infinite-Dimensional Lie Algebras, Cambridge University Press, Cambridge (1990).

    Google Scholar 

  5. A. Pressley and G. Segal, Loop Groups, Clarendon Press, Oxford (1988).

    Google Scholar 

  6. M. Kashiwara, “The flag manifold of Kac—Moody Lie algebra,” In: Algebraic Analysis, Geometry, and Number Theory, edited by J.-I. Igusa.

  7. B. L. Feigin and E. V. Frenkel, “Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities,” Adv. in Soviet Math., Volume in Honor of I. M. Gel'fand (1993).

  8. B. L. Feigin and E. V. Frenkel, “Affine Kac-Moody algebras and semi-infinite flag manifolds,” Commun. Math. Phys.,128, 161–189 (1990).

    Google Scholar 

  9. V. G. Drinfeld, “A new realization of Yangian and of quantum affine algebras,” Dokl. Akad. Nauk SSSR,296, No. 1, 13–17 (1987).

    Google Scholar 

  10. B. L. Feigin and A. V. Stoyanovsky, Quasi-particle models for the representations of Lie algebras and the geometry of the flag manifold, Preprint, RIMS-942, Kyoto, September (1993).

  11. A. Kuniba, T. Nakanishi, and J. Suzuki, Characters in conformal field theories from thermodynamic Bethe Ansatz, HUTP-92/A069 preprint, December (1992).

  12. M. Terhoeven, Lift of Dilogarithm to Partition Identities, Preprint, Bonn (1992).

  13. R. Kedem, T. R. Klassen, B. M. McCoy, and E. Melzer, Fermionic quasi-particle representations for characters ofG (1)1 ×G (1)1 /G (1)2 , ITP preprint (1992).

  14. S. Dasmahapatra, R. Kedem, T. R. Klassen, B. M. McCoy, and E. Melzer, Quasi-particles, conformal field theory, andq-series, Preprint ITP-SB-93-12, RU-93-07.

  15. V. B. Mehta and A. Ramanathan, “Frobenius splitting and cohomology vanishing for a Schubert variety,” Ann. Math.,122, 27–40 (1985).

    Google Scholar 

  16. H. H. Andersen, “Schubert varieties and Demazure character formula,” Invent. Math.,79, 611–618 (1985).

    Google Scholar 

  17. G. Andrews, The Theory of Partitions, Addison-Wesley (1976).

  18. A. Grothendieck et al., SGA 2, North-Holland, Amsterdam (1968).

    Google Scholar 

  19. S. Kumar, “Demazure character formula in arbitrary Kac—Moody setting,” Invent. Math.,89, 395–423 (1987).

    Google Scholar 

  20. V. Lakshmibai and C. S. Seshadri, “Thèorie monomiale standard pour\(\widehat{\mathfrak{s}\mathfrak{l}}_2 \),” C. R. Acad. Sci. Paris Ser. I,305, 183–185 (1987).

    Google Scholar 

Download references

Authors

Additional information

Moscow Mathematical Institute. Independent Moscow University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 28, No. 1, pp. 68–90, January–March, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoyanovsky, A.V., Feigin, B.L. Functional models for representations of current algebras and semi-infinite Schubert cells. Funct Anal Its Appl 28, 55–72 (1994). https://doi.org/10.1007/BF01079010

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01079010

Keywords

Navigation