Skip to main content
Log in

Epstein-Barr virus and brain lymphomas

  • Invited Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Burkitt D: A sarcoma involving the jaw in African children. Br J Surg 46: 218–223, 1958

    Google Scholar 

  2. Berard CW, O'Conor GT, Thomas LM, Torloni J (eds): Histopathological definition of Burkitt's tumor. Bull World Hlth Org 40: 601–607, 1969

  3. Burkitt D: A children's cancer dependent on climatic factors. Nature 194: 232–234, 1962

    Google Scholar 

  4. Burkitt D: Determining the climatic limitations of children's cancer common in Africa. Br Med J 11: 1019–1023, 1962

    Google Scholar 

  5. Epstein MA, Achong BG, Barr YM: Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1: 702–703, 1964

    Google Scholar 

  6. Reedman BM, Klein G: Cellular localization of an Epstein-Barr virus (EBV) — associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int J Cancer 11: 499–520, 1973

    Google Scholar 

  7. Klein G, Clifford P, Klein E, Stjermswärd J: Search for tumor-specific immune reactions in Burkitt lymphoma patients by the membrane immunofluorescence reaction. Proc Natl Acad Sci (USA) 55: 1628–1635, 1966

    Google Scholar 

  8. Henle G, Henle W: Observations on childhood infections with the Epstein-Barr virus. J Infect Dis 121: 303–310, 1970

    Google Scholar 

  9. Henle G, Henle W: Immunofluorescence in cells derived from Burkitt's lymphoma. J Bacteriol 91: 1248–1256, 1966

    Google Scholar 

  10. Pritchett RF, Mayward SD, Kieff E: DNA of Epstein-Barr virus. I. Comparisons of DNA of virus purified from HR-1 and B 95-8 cells. J Virol 15: 261–279, 1975

    Google Scholar 

  11. Henle G, Henle W, Horwitz CA: Antibodies to Epstein-Barr virus-associated nuclear antigen in infectious mononucleosis. J Inf Dis 130: 231–239, 1974

    Google Scholar 

  12. Dambaugh T, Beisel C, Hummel Met al.: Epstein-Barr virus DNA. VII. Molecular cloning and detailed mapping of EBV (B 95-8) DNA. Proc Natl Acad Sci (USA) 77: 2999–3003, 1980

    Google Scholar 

  13. Baer B, Bankier A, Biggin Met al.: DNA sequence and expression of the B 95-8 Epstein-Barr virus genome. Nature (Lond) 310: 207–211, 1984

    Google Scholar 

  14. Dambaugh T, Hennessy K, Fennewald S, Kieff E: The virus genome and its expression in latent infection. In: Epstein MA, Achong BG (eds) The Epstein-Barr Virus: Recent Advances. Wiley & Sons, New York 13–47, 1986

    Google Scholar 

  15. Roizman B: The family herpesviridae. In: Roizman B, Whitley RJ, Lopez C (eds) The Human Herpesviruses. Raven Press, New York 1–10, 1993

    Google Scholar 

  16. Fearon D, Ahearn J: Complement receptor type I (CD35) and complement receptor type 2 (CD21). Current topics in Microbiology and Immunology 153: 83–89, 1990

    Google Scholar 

  17. Sixbey JW, Vesterinen EA, Nedrud JG, Raab-Traub N, Walton LA, Pagano JS: Replication of Epstein-Barr virus in human epithelial cells infectedin vitro. Nature (London) 306: 480–483, 1983

    Google Scholar 

  18. Klein G: The relationship of the virus to nasopharyngeal carcinoma. In: Epstein MA, Achong BG (eds) The Epstein-Barr Virus. Springer-Verlag, New York 340–350, 1979

    Google Scholar 

  19. Leyvraz S, Henle W, Chahinian APet al.: Association of Epstein-Barr virus with thymic carcinoma. N Eng J Med 309: 745–748, 1983

    Google Scholar 

  20. Jones JF, Shurin S, Carlos A, Tubbs RR, Sciotto CG, Wahl R, Sands J, Gottman D, Katz BZ, Sklar J: T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Eng J Med 318: 733–741, 1988

    Google Scholar 

  21. Alfieri C, Birkenbach M, Kieff E: Early events in Epstein-Barr virus infection of human B lymphocytes. Virol 181: 595–608, 1991

    Google Scholar 

  22. Kieff E, Wang F, Birkenbach M, Cohen J, Sample J, Tomkinson M, Swaminathan S, Longnecker R, Marchini A, Mannick J, Tsang S-F, Sample C, Kurilla M: Molecular biology of lymphocyte transformation by Epstein-Barr virus. In: Brugge J, Curran T, Harlow E, McCormack F (eds) Origins of Human Cancer. Cold Spring Harbor, New York 343–359, 1991

    Google Scholar 

  23. Leibowitz D, Kieff E: Epstein-Barr virus. In: Roizman B, Whittey RJ, Lopez D (eds) The Human Herpesviruses. Raven Press, New York 107–172, 1993

    Google Scholar 

  24. Cohen J, Wang F, Kieff E: Epstein-Barr virus nuclear protein-2 mutations define essential domains from transformation and transactivation. J Virol 65: 2545–2554, 1991

    Google Scholar 

  25. Howe JG, Steitz JA: Localization of Epstein-Barr virusencoded small RNAs byin situ hybridization. Proc Natl Acad Sci (USA) 83: 9006–9010, 1986

    Google Scholar 

  26. Gilligan K, Rajadurei P, Resnick L, Raab-Traub N: Epstein-Barr virus small nuclear RNAs are not expressed in permissively infected cells in AIDS-associated leukoplakia. Proc Natl Acad Sci (USA) 87: 8730–8794, 1990

    Google Scholar 

  27. Gregory CD, Rowe M, Rickinson AB: Different Epstein-Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line. J Gen Virol 71: 1481–1495, 1990

    Google Scholar 

  28. Rickinson AB, Young LS, Rowe M: Influence of the Epstein-Barr virus nuclear antigen EBNA-2 on the growth phenotype of virus-transformed B cells. J Virol 61: 1310–1316, 1987

    Google Scholar 

  29. Sample J, Young L, Martin Bet al.: Epstein-Barr virus type 1 and 2 differ in their EBNA-3A, EBNA-3B and EBNA-3C genes. J Virol 64 (9): 4084–4092, 1990

    Google Scholar 

  30. Bailey P: Intracranial sarcomatous tumors of leptomeningeal origin. Arch Surg 18: 1359–1402, 1929

    Google Scholar 

  31. Yuile CL: Case of primary reticulum cell sarcoma of the brain. Relationship of microglial cells to histiocyte. Arch Pathol 26: 1037–1044, 1938

    Google Scholar 

  32. Hambery JW, Dugger GS: Perithelial sarcoma of the brain. A clinicopathological study of thirteen cases. Arch Neurol Psychiatry 74: 732–761, 1964

    Google Scholar 

  33. Barnett LB, Schwartz E: Cerebral reticulum cell sarcoma after multiple renal transplants. J Neurol Neurosurg Psychiatry 37: 966–970, 1974

    Google Scholar 

  34. Benedek L, Tuba A: Über das Microgliom. Dtsch Z Nervenheilk 152: 159–169, 1941

    Google Scholar 

  35. Henry JM, Heffner RR Jr, Dillard SM: Primary malignant lymphomas of the central nervous system. Cancer 34: 1293–1302, 1974

    Google Scholar 

  36. Schaumberg HH, Plank CR, Adams RD: The reticulum cell sarcoma-microglioma group of brain tumors. A consideration of their clinical features and therapy. Brain 95: 199–212, 1972

    Google Scholar 

  37. Tanaka T, Nishimoto A, Doi A: Primary intracranial malignant lymphomas with particular reference to their pathogenesis. Acta Pathol J 27: 927–940, 1977

    Google Scholar 

  38. Houthoff HJ, Poppema S, Ebels EJ, Elema JD: Intracranial malignant lymphomas. A morphologic and immunocytologic study of twenty cases. Acta Neuropathol (Berl) 44: 203–210, 1978

    Google Scholar 

  39. Taylor CR, Russell R, Lukes RJ, Davis RL: An immunohistological study of immunoglobulin content of primary central nervous system lymphomas. Cancer 41: 2197–2205, 1978

    Google Scholar 

  40. Ernerudh J, Olsson T, Berlin G, Gustafsson B, Karkson M: Cell surface markers for diagnosis of central nervous system involvement in lymphoproliferative disease. Ann Neurol 20: 610–615, 1986

    Google Scholar 

  41. Bashir R, Freedman A, Harris N, Bain K, Nadler L, Hochberg F: Immunophenotypic profile of CNS lymphoma: A review of eighteen cases. J Neuroonc 7: 243–254, 1989

    Google Scholar 

  42. McCue MP, Sandroch AW, Lee JM, Morris NL, Hedley-Whyte T: Primary T-cell lymphoma of the brainstem. Neurol 43: 377–381, 1993

    Google Scholar 

  43. Cleary ML, Trela MJ, Weiss LM: Most null large cell lymphomas are B lineage neoplasms. Lab Invest 53: 521–525, 1985

    Google Scholar 

  44. The non-Hodgkin's lymphoma pathologic classification project. The National Cancer Institute sponsored study of classification of non-Hodgkin's lymphomas. Summary and description of a working formulation for clinical usage. Cancer 49: 2112–2139, 1982

    Google Scholar 

  45. So YT, Becksteard JM, Davis RL: Primary central nervous system lymphoma in acquired immunodeficiency syndrome. A clinical and pathological study. Ann Neurol 20: 566–577, 1986

    Google Scholar 

  46. Hochberg FH, Miller DC: Primary central nervous system lymphoma. J Neuro-Surg 68: 835–853, 1988

    Google Scholar 

  47. Eby NL, Grufferman S, Flannelly CM, Schold SC, Vogel FS, Burger PC: Increasing incidence of primary brain lymphoma in the US. Cancer 62: 2461–2465, 1988

    Google Scholar 

  48. Beral V, Peterman T, Berkelman R, Taffe H: AIDS-associated non-Hodgkin's lymphoma. Lancet 337: 805–809, 1991

    Google Scholar 

  49. Pluda M, Yarchoan R, Jaffe ES, Feuerstein IM, Solomon D, Steinberg SMet al.: Development of non-Hodgkin's lymphoma in a cohort of patients with severe immunodeficiency virus (HIV) infection on long-term antiretroviral therapy. Ann Intern Med 113: 276–282, 1990

    Google Scholar 

  50. Hoover R, Fraumeni JF: Risk of cancer in renal transplant recipients. Lancet 2: 55–57, 1973

    Google Scholar 

  51. Fine HA, Mayer RJ: Primary central nervous system lymphoma. Ann Intern Med 119: 1093–1104, 1993

    Google Scholar 

  52. DeAngelis LM: Primary central nervous system lymphoma: A new clinical challenge. Neurol 41: 619–621, 1991

    Google Scholar 

  53. Kumanishi T, Washiyama K, Nishiyamam Aet al.: Primary malignant lymphoma of the brain: Demonstration of immunoglobulin gene rearrangements in four cases by the Southern blot hybridization technique. Acta Neuropathol 79: 23–26, 1989

    Google Scholar 

  54. Hochberg FM, Miller G, Schooley RT: Central nervous system lymphoma related to Epstein-Barr virus. N Engl J Med 309: 745–748, 1983

    Google Scholar 

  55. Rosenberg NL, Hochberg FM, Miller G: Primary central nervous system lymphoma related to Epstein-Barr virus in a patient with acquired immune deficiency symdrome. Ann Neurol 20: 98–102, 1986

    Google Scholar 

  56. Rouah E, Rogers BB, Wilson DRet al.: Demonstration of Epstein-Barr virus in primary CNS lymphoma by the polymerase chain reaction andin situ hybridization. Human Pathol 21 (5): 545–550, 1990

    Google Scholar 

  57. Vital C, Merlio JP, Vital Aet al.: Three cases of primary cerebral lymphoma in AIDS patients: detection of Epstein-Barr virus byin situ hybridization and Southern blot technique. Acta Neuropath 84: 33–3341, 1992

    Google Scholar 

  58. Del Mistro A, Laverda A, Calabrese Fet al.: Primary lymphoma of the central nervous system in two children with acquired immune deficiency syndrome. Am J Clin Pathol 94: 722–728, 1990

    Google Scholar 

  59. Meeker TC, Shiramizu B, Kaplan Let al.: Evidence for molecular subtypes of HIV-associated lymphoma: division into peripheral monoclonal, polyclonal and central nervous system lymphoma. AIDS 5: 669–674, 1991

    Google Scholar 

  60. Shiramizu B, Herndier B, Meeker Tet al.: Molecular and immunophenotypic characterization of AIDS-associated Epstein-Barr virus-negative polyclonal lymphoma. J Clin Oncol 10 (3): 383–389, 1992

    Google Scholar 

  61. List AF, Greer JP, Cousar JPet al.: Primary brain lymphoma in the immunocompetent host: relation to Epstein-Barr virus. Mod Pathol 3: 609–612, 1990

    Google Scholar 

  62. Bashir RM, Harris HL, Hochberg FM, Singer RM: Detection of Epstein-Barr virus in CNS lymphomas byin-situ hybridization. Neurology 39: 813–817, 1989

    Google Scholar 

  63. Bashir RM, Hochberg FM, Harris NL, Purtilo D: Variable expression of Epstein-Barr virus genome as demonstrated byin situ hybridization in central nervous system lymphomas in immunocompromised patients. Mod Pathol 3 (4): 429–434, 1990

    Google Scholar 

  64. Borisch-Chappuis B, Nezelof C, Miller-Hermelink HK: Different Epstein-Barr virus expression in lymphomas from immunocompromised and immunocompetent patients. Am J Pathol 136: 751–759, 1990

    Google Scholar 

  65. Murphy JK, Young LS, Bevan ISet al.: Demonstration of Epstein-Barr virus in primary brain lymphoma byin situ DNA hybridization in paraffin wax embedded tissue. J Clin Pathol 43: 220–223, 1990

    Google Scholar 

  66. Nakleh RE, Manivel JC, Copenhaver CMet al:In situ hybridization for the detection of Epstein-Barr virus in central nervous system lymphoma. Cancer 67: 444–448, 1991

    Google Scholar 

  67. Hamilton-Dutoit SJ, Pallesen G, Lanzmann MBet al.: AIDSrelated lymphoma histopathology, immunophenotype, and association with Epstein-Barr virus as demonstrated byin situ nucleic acid hybridization. Am J Pathol 138: 149–163, 1991

    Google Scholar 

  68. MacMahon E, Glass JD, Hayward SDet al.: Epstein-Barr virus in AIDS-related primary central nervous system lymphoma. Lancet 338: 969–973, 1991

    Google Scholar 

  69. Hamilton-Dutoit S, Raphael M, Audouin Jet al.:In situ demonstration of Epstein-Barr virus small RNAs (EBER-1) in acquired immunodeficiency syndrome-related lymphomas: correlation with tumor morphology and primary site. Blood 82: 619–624, 1993

    Google Scholar 

  70. Cinque P, Brytting M, Vagol Let al.: Epstein-Barr virus DNA in cerebrospinal fluid from patients with AIDS-related primary lymphoma of the central nervous system. Lancet 342: 398–401, 1993

    Google Scholar 

  71. Bashir R, McManus B, Cunningham Cet al.: Detection of EBER-1 RNA in primary brain lymphomas in immunocompetent and immunocompromised patients. Neuro-Oncol 20: 47–53, 1994

    Google Scholar 

  72. Bignon YJ, Clavelou R, Ramos Fet al.: Detection of Epstein-Barr virus sequences in primary brain lymphoma without immunodeficiency. Neurology 41: 1152–1153, 1991

    Google Scholar 

  73. DeAngelis LM, Wong E, Rosenblum Met al.: Epstein-Barr virus in acquired immune deficiency symdrome (AIDS) and non-AIDS primary central nervous system lymphoma. Cancer 70: 1607–1611, 1992

    Google Scholar 

  74. Pallensen G. Hamilton-Dutoit SJ, Rowe Met al.: Expression of Epstein-Barr virus replication proteins in AIDS-related non-Hodgkins lymphoma cells. J Pathol 165: 289–299, 1991

    Google Scholar 

  75. Bashir R, Luka J, Cheloha Ket al.: Expression of Epstein-Barr virus proteins in primary CNS lymphoma in AIDS patients. Neurology 43 (11): 2358–2362, 1993

    Google Scholar 

  76. Fahraeus R, Rymo L, Rhim JS, Klein GF: Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. Int J Cancer 42: 329–338, 1988

    Google Scholar 

  77. Young LS, Dawson CW, Clark Det al.: Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 69: 1051–1065, 1988

    Google Scholar 

  78. Gregory CD, Murray RJ, Edwards CF, Rickingson AB: Down regulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein-Barr virus-positive Burkitt's lymphoma underlies tumor cell escape from virus-specific T cell surveillance. J Exp Med 167: 1811–1824, 1988

    Google Scholar 

  79. Gratama JW, Julter MM, Minarovits Jet al.: Expression of Epstein-Barr virus-encoded, growth-transformation-associated proteins in lymphoproliferatios of bone-marrow transplant recipients. Int J Cancer 47: 188–192, 1991

    Google Scholar 

  80. Gunthel CJ, McGrath M, Herndier B, Shiramizu B: Association of Epstein-Barr virus type 1 and 2 with acquired immunodeficiency syndrome-related primary central nervous system lymphomas. Blood 83 (2): 618–619, 1994

    Google Scholar 

  81. Tosato G: The Epstein-Barr virus and the immune system. Adv Cancer Res 40: 75–125, 1987

    Google Scholar 

  82. Frohman EM, Van Den Noort S, Gupta S: Astrocytes and intracerebral immune responses. J Clin Immunol 9 (1): 1–9, 1989

    Google Scholar 

  83. Sasseville VG, Newman WA, Lackner AA: Elevated vascular cell adhesion molecule-1 in AIDS encephalitis induced by symian immunodeficiency virus. Am J Pathol 141 (5): 1021–1028, 1992

    Google Scholar 

  84. Ljunggren H, Karre K: Host resistance directed selectively against H-2 deficient lymphoma variants: analysis of the mechanism. J Exp Med 162: 1745–1759, 1985

    Google Scholar 

  85. Mulligan RC: The basic science of gene therapy. Science 260: 926–931, 1993

    Google Scholar 

  86. Wei MX, Tamiya T, Breakefield XO, Chiocca EA: Viral vector mediated-transfer of drug-sensitivity genes for experimental brain tumor therapy. In: Kaplitt MG, Loewy AD (eds) Viral Vectors: Tools for Study and Genetic Manipulation of the Nervous System. Academic Press, Orlando (in press)

  87. Oldfield EH, Ram Z, Culver KW, Balese RM, DeVroom HL, Anderson WF: Clinical protocols: Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Human Gene Therapy 4: 39–68, 1993

    Google Scholar 

  88. Wang D, Liebowitz D, Kieff E: An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43: 831–840, 1985

    Google Scholar 

  89. Wang D, Liebowitz D, Wang F, Gregory C, Rickinson A, Larson R, Springer R, Kieff E: Epstein-Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. J Virology 62: 4173–4184, 1988

    Google Scholar 

  90. Wei MX, Ooka T: A transforming function of the BARF-1 gene encoded by Epstein-Barr virus. EMBO J 8: 2897–2903, 1989

    Google Scholar 

  91. Wei MX, Moulin JC, Decaussin G, Berger F, Ooka T: Expression and tumorigenicity of the Epstein-Barr virus BARF-1 gene in human Louckes B-lymphocyte cell line. Cancer Research 54: 1843–1848, 1994

    Google Scholar 

  92. Thorley-Lawson DA, Mann KP: Early events in Epstein-Barr virus infection provide a model for B cell activation. J Exp Med 162: 45–59, 1985

    Google Scholar 

  93. Wei MX, Tamiya T, Chase M, Boviatsis EJ, Chang TKH, Kowall NW, Hochberg FH, Waxman DJ, Breakefield XO, Chiocca EA: Experimental tumor therapy in mice using the cyclophosphamide-activating cytochrome P450 2B1 gene. Human Gene Therapy 5: 969–978, 1994

    Google Scholar 

  94. Clarke L, Waxman DJ: Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase of drug activation. Cancer Research 49: 2344–2350, 1989

    Google Scholar 

  95. LeBlanc GA, Waxman DJ: Mechanisms of cyclophosphamide action on hepatic P-450 expression. Cancer Research 50: 5720–5726, 1990

    Google Scholar 

  96. Sladek NE: Bioassay and relative cytotoxic potency of cyclophosphamide metabolites generatedin vitro andin vivo. Cancer Research 33: 1150–1158, 1973

    Google Scholar 

  97. Sladek NE: Oxazaphosphorines. In: Powis G, Prough RA (eds) Metabolism and Action of Anti-Cancer Drugs. Taylor & Francis, London 48–90, 1987

    Google Scholar 

  98. Dearfield KL, Jacobson-Kram D, Huber BE, Williams JR: Induction of sister chromatid exchanges in human and rat hepatoma cell lines by cyclophosphamide and phosphoramide mustard and the effects of cytochrome P-450 inhibitors. Biochem Pharmacol 35: 2199–2205, 1986

    Google Scholar 

  99. Genka S, Deutsch J, Stahle PL, Shetty UH, John V, Robinson C, Rapoport SI, Greig NH: Brain and plasma pharmacokinetics and anticancer activities of cyclophosphamide and phosphoramide mustard in the rat. Cancer Chemother Pharmacol 27: 1–7, 1990

    Google Scholar 

  100. Colvin M, Hilton J: Pharmacology of cyclophosphamide and metabolites. Cancer Treatment Reports 65: 89–95, 1981

    Google Scholar 

  101. Sladek NE, Doeden D, Powers JF, Krivit W: Plasma concentrations of 4-hydroxycyclophosphamide and phosphoramide mustard in patients repeatedly given high doses of cyclophosphamide in preparation for bone marrow transplantation. Cancer Treatment Reports 68: 1247–1254, 1984

    Google Scholar 

  102. Sladek NE: Metabolism of Oxazaphosphorines. Pharmacol Ther 37: 301–355, 1988

    Google Scholar 

  103. Dedrick RL, Morrison PF: Carcinogenic potency of alkylating agents in rodents and humans. Cancer Research 52: 2464–2467, 1992

    Google Scholar 

  104. Fuchs HE, Archer GE, Colvin OM, Bigner SH, Schuster JM, Fuller GN, Muhlbaier LH, Schold SC Jr, Friedman HS, Bigner DD: Activity of intrathecal 4-hydroperoxycyclophosphamide in a nude rat model of human neoplastic meningitis. Cancer Res 50: 1954–1959, 1990

    Google Scholar 

  105. Arndt CAS, Colvin OM, Balis FM, Lester CM, Johnson G, Poplack DG: Intrathecal administration of 4-hydroperoxycyclophosphamide in rhesus monkeys. Cancer Res 47: 5932–5934, 1987

    Google Scholar 

  106. Arndt CAS, Balis FM, McCully CL, Colvin OM, Poplack DG: Cerebrospinal fluid penetration of active metabolites of cyclophosphamide and ifosfamide in rhesus monkeys. Cancer Res 48: 213–2115, 1988

    Google Scholar 

  107. Roszman T, Elliot L, Brooks W: Modulation of T-cell function by gliomas. Immunol Today 12: 370–374, 1991

    Google Scholar 

  108. Mahaley MS Jr, Brooks WH, Roszman TL, Bigner DD, Dudka L, Richardson S: Immunobiology of primary intracranial tumors. Part 1: Studies of the cellular and humoral general immune competence of brain-tumor patients. J Neurosurg 46: 467–476, 1977

    Google Scholar 

  109. Young HF, Sakalas R, Kaplan AM: Inhibition of cell-mediated immunity in patients with brain tumors. Surg Neurol 5: 19–23, 1976

    Google Scholar 

  110. Paul WE, Ohara J: B-cell stimulatory factor-1/interleukin-4. Ann Rev Immunol 5: 429–459, 1987

    Google Scholar 

  111. Tepper RI, Pattengale PK, Leder P: Murine interleukin-4 displays potent anti-tumor activityin vivo. Cell 57: 503–512, 1989

    Google Scholar 

  112. Tepper RI, Coffman RL, Leder P: An eosinophil-dependent mechanism for the antitumor effect of IL-4. Science 257: 548–551, 1992

    Google Scholar 

  113. Golumbek PT, Lazenby AJ, Levitsky HI, Jaffee LM, Karasuyama H, Baker M, Pardoll DM: Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254: 713–716, 1991

    Google Scholar 

  114. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci (USA) 90: 3539–3543, 1993

    Google Scholar 

  115. Elkins KL, Ennist DL, Winegar RK, Weir JP:In vivo delivery of interleukin-4 by a recombinant vaccinia virus prevents tumor development in mice. Hum Gene Ther 5: 809–820, 1994

    Google Scholar 

  116. Yu JS, Wei MX, Chiocca EA, Martuza RL, Tepper RI: Treatment of glioma by engineered interleukin 4-secreting cells. Cancer Research 53: 3125–3128, 93

  117. Wei MX, Tamiya T, Hurford Jr RK, Boviatsis EJ, Tepper RI, Chiocca EA: Enhancement of interleukin 4-mediated tumor regression in athymic mice byin situ retroviral gene transfer. Human Gene Therapy (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashir, R.M., Hochberg, F.H. & Wei, M.X. Epstein-Barr virus and brain lymphomas. J Neuro-Oncol 24, 195–205 (1995). https://doi.org/10.1007/BF01078490

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01078490

Key words

Navigation