Skip to main content
Log in

Mass transfer rate measurement of short time liquid phase epitaxial growth using an electrochemical method

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Convective mass transfer phenomena become significant in sub-micrometre liquid phase epitaxial layer growth. An aqueous solution containing 0.01m K3Fe(CN)6+0.01m K4Fe(CN)6+1.0m KOH in a Plexiglass vessel was used to simulate the fluid motion and mass transfer condition in liquid phase epitaxy. The mass transfer phenomena between the liquid phase epitaxial system and electrochemical system at mass transfer limiting condition are equivalent. This was theoretically and experimentally verified. The influence of growth conditions, such as growth time (40 ms≤t≤300 s), solution depth (0.625 cm≤H≤1.25 cm), and solution kinematic viscosity (0.0104 cm2s−1v≤0.0161 cm2s−1), on the growth rate of the epi-layer were simulated by the electrochemical method. The dependence of simulated epi-layer thickness,L', on growth time,t, can be expressed asL'=αt β. Whent≤0.1 s, the convective mass transfer process predominates and β=0.9±0.2. Whent>0.1 s, the mass transfer rate is controlled by diffusion and β=0.5±0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

area of epi-layer or electrode (cm2)

A d :

constant in Equations 4 and 5 (cm3 A−1 s−1)

A c :

constant in Equations 12 and 13 (cm3 A−1 s−1)

a :

constant in Equation 14 (-)

C b :

bulk concentration in the LPE system (mol cm−3)

C' b :

bulk concentration in the electrochemical system (mol cm−3)

C i :

surface concentration in LPE system (mol cm−3)

C s :

solid concentration of the epi-layer (mol cm−3)

D :

diffusivity in the LPE system (cm2s−1)

D' :

diffusivity in the electrochemical system (cm2 s−1)

F :

Faraday number (C mol−1)

H :

solution depth (cm)

I :

electric current (A)

i :

electric current density (A cm−2)

k m :

convective mass transfer coefficient in the LPE system (cm s−1)

k 'm :

convective mass transfer coefficient in the electrochemical system (cm s−1)

L :

epi-layer thickness (cm)

L' :

simulated epi-layer thickness by electrochemical method (cm)

L d :

moving distance of slider (cm)

L w :

well length in LPE and electrochemical system (L=0.587 cm) (cm)

n :

number of charge transfer (equiv.mol−1)

Re :

Reynolds number in the LPE system (VL w /v)

:

Reynolds number in the electrochemical system (VL w /v)

Sc :

Schmidt number in the LPE system (v/D)

:

Schmidt number in the electrochemical system (v/D')

Sh :

Sherwood number in the LPE system (k m x/D)

S′h :

Sherwood number in the electrochemical system (k m x/D')

t :

contact time of melt and substrate in LPE system or contact time of solution and electrode in electrochemical system (s)

t a :

approximate contact time (s)

V :

well moving velocity (cm s−1)

W :

well width in LPE and electrochemical system (w=0.813 cm) (cm)

x :

characteristic length (cm)

y :

distance from the solid surface to the solution (cm)

α:

constant in Equation 4

β:

constant in Equation 14

ν:

kinematic viscosity of solution (cm2 s−1)

References

  1. D. L. Rode,J. Crystal Growth 20 (1973) 13.

    Google Scholar 

  2. J. J. Hsieh,27 (1974) 49.

    Google Scholar 

  3. M. Yano, H. Nishi and M. Takusagawa,IEEJ. Quantum Electronics QE-15 (1979) 571.

    Google Scholar 

  4. D. Botez,17 (1981) 178.

    Google Scholar 

  5. E. A. Rezek, B. A. Vojak, R. Chin, N. Holonyak Jr. and E. A. Sammann,J. Electronic Materials 10 (1981) 255.

    Google Scholar 

  6. C. L. Reynolds Jr., M. C. Tamargo, P. J. Anthony and J. L. Zilko,J. Crystal. Growth 57 (1982) 109.

    Google Scholar 

  7. T. Henry and T. Minden,6 (1970) 228.

    Google Scholar 

  8. S. Y. Leung and N. E. Schumaker,60 (1982) 421.

    Google Scholar 

  9. M. Eisenberg, C. W. Tobias and C. R. Wilke,J. Electrochem. Soc. 103 (1954) 413.

    Google Scholar 

  10. D-T. Chin and M. Litt,119 (1972) 1338.

    Google Scholar 

  11. D-T. Chin and C. H. Tsang,125 (1978) 1461.

    Google Scholar 

  12. K-L. Hsueh and D-T. Chin,133 (1986) 75 and133 (1986) 1845.

    Google Scholar 

  13. D-T. Chin and K-L. Hsueh,Electrochim. Acta 31 (1986) 561.

    Google Scholar 

  14. A. Bard and L. R. Faulkner, ‘Electrochemical Methods-Fundamentals and Applications’, J. Wiley & Sons, New York, (1980) p. 567.

    Google Scholar 

  15. R. B. Wilson, P. Besomi and R. J. Nelson,J. Electrochem. Soc. 132 (1985) 172.

    Google Scholar 

  16. P. Besomi, R. B. Wilson and R. J. Nelson,132 (1985) 176.

    Google Scholar 

  17. H. Nelson,RCA Rev. 24 (1963) 603.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, LJ., Hsueh, KL., Wan, CC. et al. Mass transfer rate measurement of short time liquid phase epitaxial growth using an electrochemical method. J Appl Electrochem 21, 998–1004 (1991). https://doi.org/10.1007/BF01077586

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01077586

Keywords

Navigation