Skip to main content
Log in

The continuous stirred tank electrochemical reactor. An overview of dynamic and steady state analysis for design and modelling

  • Reviews of Applied Electrochemistry 30
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The continuous stirred tank reactor is frequently adopted as a model for electrochemical reactors. This article brings together the various important aspects of the model: dynamics, thermal characteristics, residence time distributions and steady state characteristics and gives an overview of the design procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

magnitude of stepchange

C j :

concentration of speciesj (mol m−3)

C f :

friction factor

CE:

current efficiency

C s j :

concentration of speciesj at the surface (mol m−3)

C ji :

inlet concentration of speciesj (mol m−3)

C p :

heat capacity (J kg−1 K−1)

d p :

mean particle diameter (m)

D c :

dispersion coefficient

D a :

Damköhler number

e :

voidage

E :

electrode potential (V)

E T :

cell voltage (V)

E 0d :

decomposition potential (V)

f :

parameterF/RT (V−1)

F :

Faraday number

G j :

transfer function

H :

enthalpy (kJ mol−1)

ΔH r :

heat of reaction (kJ mol−1)

ΔH v :

heat of vaporization (kJ mol−1)

i :

current density (A m−2)

i T :

total current density (A m−2)

i * :

dimensionless current density =i 1/n 1 Fk LA C A0

I :

current (A)

I j :

partial current for reactionj (A m−2)

k :

homogeneous reaction rate constant (s−1)

k j :

electrochemical rate constant in forward direction for stepj (m s−1 (mol m−3)1−w)

k −j :

electrochemical rate constant in reverse direction for stepj (m s−1 (mol m−3)1−w)

K bl :

reverse electrochemical rate parameter (m s−1)

K Lj :

mass transport coefficient of speciesj (m s−1)

K :

equilibrium constant

K p :

gain

L :

electrode length (m)

m :

total mass of electrolyte (kg)

m j :

mass of componentsj (kg)

n :

tank number

N :

number of tanks

n j :

mol of speciesj

P :

pressure (bar)

Q :

heat flow (kJ s−1)

Q ex :

heat from external source (kJ s−1)

Q v :

enthalpy of vaporization (kJ.s−1)

Q L :

heat losses (kJ s−1)

r j :

rate of electrode processes (mol m−3 s−1)

r-i :

rate of electrode processes in reverse direction (mol m−3 s−1)

B :

gas constant (kJ mol−1 K−1)

R e :

internal electrical resistance (Ω)

s :

Laplace transform operator

S :

surface area (m2)

S :

selectivity

t :

time (s)

T :

temperature (K)

T j :

inlet temperature of electrolyte (K)

u :

velocity (m s−1)

U :

overall heat transfer coefficient (kJ m−2 K−1 s−1)

v :

volumetric flowrate of electrolyte

V :

volume (m3)

W :

mean mass flowrate (kJ s−1)

w 1,w 2,w j :

reaction order exponents

x :

dimension of reactor

X 1,X 2 :

perturbation variables

X 1 :

fractional conversion of speciesj

Y 1,Y 2 :

perturbation variables

z :

dimensionless length

Bo :

Bodenstein number

Pe :

Peclet number

Re :

Reynolds number

α′:

transfer coefficient (V−1)

β:

coefficient defining potential dependence of electrochemical rate constant = α′nF (V−1)

ϱ:

density (kg m−3)

τ:

residence time (s)

τL :

dimensionless residence time

\(\bar \eta\) :

effectiveness factor

η:

overpotential (V)

σ:

specific surface area (m−1)

ν:

parameter στ (s m−1)

a:

anode

c:

cathode

i:

inlet

References

  1. C. Y. Wen and L. T. Fan, ‘Models for Flow Systems and Chemical Reactors’, Marcel Dekker, NY (1975).

    Google Scholar 

  2. K. R. Westerterp, W. P. M. van Swaajj and A. A. C. M. Beenackers, ‘Chemical Reactor Design and Operation’, J. Wiley & Sons, NY (1984).

    Google Scholar 

  3. M. M. Jaksic,Electrochim. Acta 21 (1976) 1127.

    Google Scholar 

  4. L. Weise, M. Giron, G. Valentin and A. Storck, Electrochemical Engineering'IChemE Symposium Series no. 98 (1986) p. 49.

    Google Scholar 

  5. R. C. Alkire and J. D. Lisius,J. Electrochem. Soc. 132 (1985) 1879.

    Google Scholar 

  6. R. H. H. P. Jaeger, L. J. J. Janssen, J. G. Wijen and E. Barendrecht,J. Appl. Electrochem. 13 (1983) 637.

    Google Scholar 

  7. F. Goodridge, S. Harrison and R. E. Plimley,J. Electroanal. Chem. (1986).

  8. G. Kreysa and C. Woekcken,Chemical Engng Sci. 41 (1986) 307.

    Google Scholar 

  9. G. P. Sakellaropoulos,AIChEJ 25 (1979) 781.

    Google Scholar 

  10. E. Vieil,Electrochim. Acta 31 (1986) 263.

    Google Scholar 

  11. D. I. Pickett, ‘Electrochemical Reactor Design’, Elsevier, Barking, Essex, 2nd ed. (1979).

    Google Scholar 

  12. T. Z. Fahidy, ‘Principles of Electrochemical Reactor Analysis’, Elsevier, Barking, Essex (1985).

    Google Scholar 

  13. J. M. Edridge and E. L. Piret,Chem. Eng. Progr. 46 (1980) 290 Amsterdam.

    Google Scholar 

  14. A. N. Haines, PhD Thesis, Teeside Polytechnic (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, K. The continuous stirred tank electrochemical reactor. An overview of dynamic and steady state analysis for design and modelling. J Appl Electrochem 21, 945–960 (1991). https://doi.org/10.1007/BF01077579

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01077579

Keywords

Navigation