Functional Analysis and Its Applications

, Volume 19, Issue 4, pp 259–269 | Cite as

Filtering bases, cohomology of infinite-dimensional Lie algebras, and Laplace operators

  • F. V. Vainshtein
Article
  • 49 Downloads

Keywords

Functional Analysis Laplace Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. M. Gelfand, "The cohomology of infinite-dimensional Lie algebras. Some questions of integral geometry," in: Actes du Congres International des Mathematiciens, Nice, 1970, Vol. 1, pp. 95–111.Google Scholar
  2. 2.
    M. V. Losik, "Cohomology of Lie algebras of vector fields with nontrivial coefficients," Funkts. Anal. Prilozhen.,6, No. 4, 44–46 (1972).Google Scholar
  3. 3.
    V. G. Kac, "Some problems on infinite-dimensional Lie algebras and their representations," Lect. Notes Math.,933, 141–162 (1982).Google Scholar
  4. 4.
    A. Rocha-Carridi and N. R. Wallach, "Characters of irreducible representations of the Lie algebra of vector fields on the circle," Invent. Math.,72, 57–75 (1983).Google Scholar
  5. 5.
    B. L. Feigin and D. B. Fuchs, "Verma modules over the Virasoro algebra," Lect. Notes Math.,1060, 230–245 (1984).Google Scholar
  6. 6.
    V. M. Bukhshtaber and A. A. Shokurov, "The Landweber—Novikov algebra and formal vector fields on the line," Funkts. Anal. Prilozhen.,12, No. 3, 1–11 (1978).Google Scholar
  7. 7.
    L. V. Goncharova, "Cohomology of Lie algebras of formal vector fields on the line," Funkts. Anal. Prilozhen.,7, No. 2, 6–14; No. 3, 33–44 (1973).Google Scholar
  8. 8.
    V. S. Retakh and B. L. Feigin, "Cohomology of certain Lie algebras and superalgebras of vector fields," Usp. Mat. Nauk,37, No. 2, 233–234 (1982).Google Scholar
  9. 9.
    I. M. Gel'fand, B. L. Feigin, and D. B. Fuks, "Cohomology of infinite-dimensional Lie algebras and Laplace operators," Funkts. Anal. Prilozhen.,12, No. 4, 1–5 (1978).Google Scholar
  10. 10.
    D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras [in Russian], Nauka, Moscow (1984).Google Scholar
  11. 11.
    G. E. Andrews, Number Theory: Theory of Partitions, Addison-Wesley (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • F. V. Vainshtein

There are no affiliations available

Personalised recommendations