Skip to main content
Log in

Functional and genetic analysis of annexin VI

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study is concerned with the determination of the function of the 68kDa calcium-binding protein, annexin VI. Studies on the structure and regulation of the gene include a detailed analysis of annexin VI expressed heterologously in human A431 carcinoma cells. We have recently discovered that annexin VI is subject to a novel growth dependent post-translational modification. Interestingly, the protein exerts a negative effect on A431 cells. This effect was manifested as a partial reversal of the transformed phenotype. We are currently exploring the hypothesis that the post-translational modification of annexin VI is required for sub-cellular targeting, and that correct localisation within the cell is essential for function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geisow MJ, Walker JH: New proteins involved in cell regulation by Ca2+ and phospholipids. Trends Biochem Sci 11: 420–423, 1986

    Google Scholar 

  2. Moss SE, Edwards HC, Crumpton MJ: Diversity in the annexin family. In: C. W. Heizmann (ed.). Novel Calcium-Binding Proteins. Springer-Verlag, Berlin, 1991

    Google Scholar 

  3. Tufty RM, Kretsinger RH: Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme. Science 187: 167–169, 1975

    PubMed  Google Scholar 

  4. Moore PB, Kraus-Friedmann N, Dedman JR: Unique calcium-dependent hydrophobic binding proteins: possible independent mediators of intracellular calcium distinct from calmodulin. J Cell Sci 72: 121–133, 1984

    PubMed  Google Scholar 

  5. Owens RJ, Crumpton MJ: Isolation and characteisation of a novel 68000-M r Ca2+-binding protein of lymphocyte plasma membrane. Biochem J 219: 309–316, 1984

    PubMed  Google Scholar 

  6. Owens RJ, Gallagher CJ, Crumpton MJ: Cellular distribution of p68, a new calcium-binding protein from lymphocytes. EMBO J 3: 945–952, 1984

    PubMed  Google Scholar 

  7. Gerke V, Weber K: Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders. EMBO J 3: 227–233, 1984

    PubMed  Google Scholar 

  8. Edwards HC, Booth AG: Calcium sensitive, lipid binding cytoskeletal proteins of the human placental microvillar region. J Cell Biol 105: 303–311, 1987

    PubMed  Google Scholar 

  9. Südhof TC, Ebbecke M, Walker JH, Fritsche U, Boustead C: Isolation of mammalian calelectrins: a new class of ubiquitous Ca2+-regulated proteins. Biochemistry 23: 1103–1109, 1984

    PubMed  Google Scholar 

  10. Fujimagari M, Williamson PL, Schlegel RA: Ca2+-dependent membrane-binding proteins in normal erythrocytes and erythrocytes from patients with chronic myelogenous leukemia. Blood 75: 1337–1345, 1990

    PubMed  Google Scholar 

  11. Eldering JA, Kocher M, Clemetson JM, Clemetson KJ, Frey FJ, Frey BM: Presence of lipocortins I and IV, but not II and VI, in human platelets. FEBS Lett 318: 231–234, 1993

    PubMed  Google Scholar 

  12. Kobayashi R, Tashima Y: An immunological and biochemical comparison of 67 kDa calcimedin and 67 kDa calelectrin. Biochem J 262: 993–996, 1989

    PubMed  Google Scholar 

  13. Morse SS, Moore PB: 67 k calcimedin (67 kDa) is distinct from p67 calelectrin and lymphocyte 68 kDa Ca2+-binding protein. Biochem J 251: 171–174, 1988

    PubMed  Google Scholar 

  14. Ando Y, Imamura S, Owada MK, Kakunaga T, Kannagi R: Cross-linking of lipocortin I and enhancement of its Ca2+ sensitivity by transglutaminase. Biochem Biophys Res Comm 163: 944–951, 1989

    PubMed  Google Scholar 

  15. Hayashi H, Owada MK, Sonobe S, Kakunaga T: Characterisation of two distinct Ca2+-dependent phospholipid-binding proteins of 68-kDa isolated from human placenta. J Biol Chem 264: 17222–17230, 1989

    PubMed  Google Scholar 

  16. Pepinsky RB, Tizard R, Mattaliano RJ, Sinclair LK, Miller GT, Browning JL, Chow EP, Burne C, Huang K-S, Pratt D, Wachter L, Hession C, Frey AZ, Wallner BP: Five distinct calcium and phospholipid binding proteins homology with lipocortin I. J Biol Chem 263: 10799–10811, 1989

    Google Scholar 

  17. Yoshizaki H, Mizoguchi T, Arai K, Shiratsuchi M, Shidara Y, Maki M: Structure and properties of calphobindin II, an anticoagulant protein from human placenta. J Biochem 107: 43–50, 1990

    PubMed  Google Scholar 

  18. Zaks WJ, Creutz CE: Ca2+-dependent annexin self-association on membrane surfaces. Biochemistry 30 9607–9615, 1991

    PubMed  Google Scholar 

  19. Bianchi R, Giambanco I, Ceccarelli P, Pula G, Donato R: Membranebound annexin V isoforms (CaBP33 and CaBP37) and annexin VI in bovine tissues behave like integral membrane proteins. FEBS Lett 296: 158–162, 1992

    PubMed  Google Scholar 

  20. Iida H, Hatae T, Shibata Y: Immunocytochemical localization of 67 KD Ca2+ binding protein (p67) in ventricular, skeletal, and smooth muscle cells. J Histochem Cytochem 40: 1899–1907, 1992

    PubMed  Google Scholar 

  21. Blackwood RA, Ernst JD: Characterisation of Ca2+-dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins. Biochem J 266: 195–200, 1990

    PubMed  Google Scholar 

  22. Edwards HC, Crumpton MJ: Calcium-dependent phospholipid and arachidonic acid binding by the placental annexins VI and IV. Eur J Biochem 198: 121–129, 1991

    PubMed  Google Scholar 

  23. Meers P, Daleke D, Hong K, Papahadjopoulos D: Interactions of annexins with membrane phospholipids. Biochemistry 30: 2903–2908, 1991

    PubMed  Google Scholar 

  24. Sobota A, Bandorowicz J, Jezierski A, Sikorski AF: The effect of annexin IV and VI on the fluidity of phosphatidylserine/ phosphatidylcholine bilayers studied with the use of 5-deoxylstearate spin label. FEBS Lett 315: 178–182, 1993

    PubMed  Google Scholar 

  25. Driessen HPC, Newman RH, Freemont PS, Crumpton MJ: A model of the structure of human annexin VI bound to lipid monolayers. FEBS Lett 306: 75–79, 1992

    PubMed  Google Scholar 

  26. Newman R, Tucker A, Ferguson C, Tsernoglou D, Leonard K, Crumpton MJ: Crystallization of p68 on lipid monolayers and as three dimensional single crystals. J Mol Biol 206: 213–219, 1989

    PubMed  Google Scholar 

  27. Bandorowicz J, Pikula S, Sobota A: Annexins IV (p32) and VI (p68) interact with erythrocyte membrane in a calcium-dependent manner. Biochim Biophys Acta 1105: 201–206, 1992.

    PubMed  Google Scholar 

  28. Bazzi MD, Nelsestuen GL: Interaction of annexin VI with membranes: highly restricted dissipation of clustered phospholipids in membranes containing phosphatidyl-ethanolamine. Biochemistry 31: 10406–10413, 1992

    PubMed  Google Scholar 

  29. Yeatman TJ, Updyke TV, Kaetzel MA, Dedman JR, Nicolson GL: Expression of annexins on the surfaces of non-metastatic and metastatic human and rodent tumor cell lines. Clin Exp Metastasis 11: 37–44, 1993

    PubMed  Google Scholar 

  30. Barnes JA, Michiel D, Hollenberg MD: Simultaneous phosphorylation of three human calpactins by kinase C. Biochem Cell Biol 69: 163–169, 1991

    PubMed  Google Scholar 

  31. Kenton P, Johnson PM, Webb PD: The phosphorylation of p68, a calcium-binding protein associated with the human syncytiotrophoblast submembranous cytoskeleton, is modulated by growth factors, activators of protein kinase C and cyclic AMP. Biochim Biophys Acta 1014: 271–281, 1989

    PubMed  Google Scholar 

  32. Webb PD, Mahadevan LC: Calcium-dependent binding proteins associated withhuman placental syncytiotrophoblast microvillous cytoskeleton. Biochim Biophys Acta 916: 288–297, 1987

    PubMed  Google Scholar 

  33. Antonicelli F, Omri B, Breton MF, Rothut B, Russo-Marie F, Pavlovic-Hournac M, Haye B: Identification of four lipocortin proteins and phosphorylation of lipocortin I by protein kinase C in cytosols of porcine thyroid cell cultures. FEBS Lett 258: 346–350, 1989

    PubMed  Google Scholar 

  34. Lozano JJ, Haindl AH, Rocha V: Purification, characterisation, and localization of 70 kDa calcium-sensitive protein (calelectrin) from mammary glands. J Cell Physiol 141: 318–324, 1989a

    PubMed  Google Scholar 

  35. Moss SE, Jacob SM, Davies AA, Crumpton MJ: A growth-dependent post-translational modification of annexin VI. Biochim Biophys Acta 1160: 120–126, 1992

    PubMed  Google Scholar 

  36. Clark DM, Moss SE, Wright NA, Crumpton MJ: Expression of annexin VI (p68, 67kDa-calelectrin) in normal human tissues: evidence for developmental regulation in B-and T-lymphocytes. Histochem 96: 405–412, 1991

    Google Scholar 

  37. Sekimoto S, Tashiro T, Komiya Y: Two 68-kDa proteins in slow axonal transport belong to the 70-kDa heat shock protein family and the annexin family. J Neurochem 56: 1774–1782, 1991

    PubMed  Google Scholar 

  38. Tanaka K, Tashiro T, Sekimoto S, Komiya Y: Axonal transport of actin and actin-binding proteins in the rat sciatic nerve. Neurosci Res 19: 295–302, 1994

    PubMed  Google Scholar 

  39. Crompton MR, Owens RJ, Totty NF, Moss SE, Waterfield MD, Crumpton MJ: Primary structure of the human, membrane-associated calcium-binding protein p68: a novel member of a protein family. EMBO J 7: 21–27, 1988

    PubMed  Google Scholar 

  40. Moss SE, Crompton MR, Crumpton MJ: Molecular cloning of murine p68, a calcium-binding protein of the lipocortin family. Eur J Biochem 177: 21–27, 1988

    PubMed  Google Scholar 

  41. Iwasaki A, Suda M, Watanabe M, Nakao H, Hattori Y, Nagova T, Saino Y, Shidara Y, Maki M: Structure and expression of cDNA for calphobindin II, a human placental coagulation inhibitor. J Biochem 106: 43–49, 1989

    PubMed  Google Scholar 

  42. Südhof TC, Slaughter CA, Leznicki I, Barjon P, Reynolds GA: Human 67-kDa calelectrin contains a duplication of four repeats found in 35-kDa lipocortins. Proc Natl Acad Sci USA 85: 664–668, 1988

    PubMed  Google Scholar 

  43. Moss SE, Crumpton MJ: Alternative splicing gives rise to two forms of the p68 calcium-binding protein. FEBS Lett 261: 299–302, 1990

    PubMed  Google Scholar 

  44. Smith PD, Davies A, Crumpton MJ, Moss SE: Structure of the human annexin VI gene. Proc Natl Acad Sci USA 91: 2713–2717, 1994

    PubMed  Google Scholar 

  45. Magendzo K, Shirvan A, Cultraro C, Srivastava M, Pollard HB: Alternative splicing of human synexin mRNA in brain, cardiac and skeletal muscle alters the unique N-terminal domain. J Biol Chem 266: 3228–3232, 1991

    PubMed  Google Scholar 

  46. Towle CA, Weissbach L, Treadwell BV: Alternatively spliced annexin XI transcripts encode proteins that differ at the N-terminus. Biochim Biophys Acta 1131: 223–226, 1992

    PubMed  Google Scholar 

  47. Upton AL, Moss SE: Molecular cloning of a novel N-terminal variant of annexin II from rat basophilic leukaemia cells. J Biochem 302: 425–428, 1994

    Google Scholar 

  48. Barton GJ, Newman RH, Freemont PS, Crumpton MJ: Amino-acid sequence analysis of the annexin super-gene family of proteins. Eur J Biochem 198: 749–760, 1991

    PubMed  Google Scholar 

  49. Davies AA, Moss SE, Crompton MR, Jones TA, Spurr NK, Sheer D, Kozak C, Crumpton MJ: The gene coding for the p68 calcium-binding protein is localised to bands q32-q34 of human chromosome 5, and to mouse chromosome 11. Hum Genet 82: 234–238, 1989

    PubMed  Google Scholar 

  50. Cookson BT, Engelhardt S, Smith C, Bamford HA, Prochazka M, Tait JF: Organisation of the human annexin V (ANX5) gene. Genomics 20: 463–467, 1994

    PubMed  Google Scholar 

  51. Kovacic RT, Tizard R, Cate RL, Frey AZ, Wallner BP: Correlation of gene and protein structure of rat and human lipocortin I. Biochemistry 30: 9015–9021, 1991

    PubMed  Google Scholar 

  52. Spano F, Raugei G, Palla E, Colella C, Melli M: Characterisation of the human lipocortin-2-encoding multigene family: its structure suggests the existence of a short amino-acid unit undergoing duplication. Gene 95: 243–251, 1990

    PubMed  Google Scholar 

  53. Tait JF, Sakata M, McMullen BA, Miao CH, Funakoshi T, Hendrickson LE, Fujikawa K: Placental anticoagulant proteins: isolation and comparative characterisation of four members of the lipocortin family. 27: 6268–6276, 1993

    Google Scholar 

  54. Smith PD, Moss SE: Z-DNA-forming sequences at a putative duplication site in the human annexin VI-encoding gene. Gene 138: 239–242, 1994a

    PubMed  Google Scholar 

  55. Smith PD, Moss SE: Structural evolution of the annexin supergene family. Trends Genet 10: 241–246, 1994b

    PubMed  Google Scholar 

  56. Lozano JJ, Silberstein GB, Hwang S-I, Haindl AH, Rocha V: Developmental regulation of calcium-binding proteins (calelectrins and calpactin I) in mammary glands. J Cell Physiol 138: 503–510, 1989b

    PubMed  Google Scholar 

  57. Drust DS, Creutz CE: Differential subcellular distribution of p36 (the heavy chain of calpactin I) and other annexins in the adrenal medulla. J Neurochem 56: 469–478, 1991

    PubMed  Google Scholar 

  58. Wuthier RE, Wu LNY, Sauer GR, Genge BR, Yoshimori T, Ishikawa Y: Mechanism of matrix vesicle calcification: characterisation of ion channels and the nucleational core of growth plate vesicles. Bone and Mineral 17: 290–295, 1992

    PubMed  Google Scholar 

  59. Doubell AF, Bester AJ, Thibault G: Annexins V and VI: major calciumdependent atrial secretory granule-binding proteins. Hypertension 18: 648–656, 1991

    PubMed  Google Scholar 

  60. Lin HC, Südhof TC, Anderson RGW: Annexin VI is required for the budding of clathrin-coated pits Cell 70: 283–291, 1992

    PubMed  Google Scholar 

  61. Smythe E, Smith PD, Jacob SM, Theobald J, Moss SE: Endocytosis occurs independently of annexin VI in human A431 cells. J Cell Biol 124: 301–306, 1994

    PubMed  Google Scholar 

  62. Schmid SL: Coated-vesicle formation in vitro: conflicting results using different assays. Trends Cell Biol 3: 145–148, 1993

    PubMed  Google Scholar 

  63. Burgoyne RD, Clague MJ: Annexins and the endocytic pathway. TIBS 19: 231–232, 1994

    PubMed  Google Scholar 

  64. Jäckle S, Beisiegel U, Rinninger F, Buck F, Grigoleit A, Block A, Gerger I, Greten H, Windler E: Annexin VI, a marker protein of hepatocytic endosomes. J Biol Chem 269: 1026–1032, 1994

    PubMed  Google Scholar 

  65. Jones PG, Fitzpatrick S, Waisman DM: Chromaffin granules release calcium oncontact withannexin VI: implications forexocytosis. Biochemistry 33: 8180 8187, 1994

    PubMed  Google Scholar 

  66. Davidson FF, Dennis EA, Powell M, Glenney JR: Inhibition of phospholipase A2 by “lipocortins” and calpactins. J Biol Chem 262: 1698–1705, 1987

    PubMed  Google Scholar 

  67. Demange P, Voges D, Benz J, Liemann S, G ttig P, Berendes R, Burger A, Huber R: Annexin V: the key to understanding ion selectivity and voltage regulation? Trends Biochem Sci 19: 272–276, 1994

    PubMed  Google Scholar 

  68. Diaz-Munoz M, Hamilton SL, Kaetzel MA, Hazarika P, Dedman JR: Modulation of calcium release channel activity from sarcoplasmic reticulum by annexin VI (67kDa-calcimedin). J Biol Chem 265: 15894–15899, 1990

    PubMed  Google Scholar 

  69. Pollard HB, Guy HR, Arispe N, de la Fuente M, Lee G, Rojas EM, Pollard JR, Srivastava M, Zhang-Keck Z-Y, Merezhinskaya N, Caohuy H, Burns AL, Rojas E: Calcium channel and membrane fusion activity of synexin and other members of the annexin gene family. Biophys J 62: 15–18, 1992

    PubMed  Google Scholar 

  70. Hazarika P, Kaetzel MA, Sheldon A, Karin NJ, Fleischer, S, Nelson TE, Dedman JR: Annexin VI is associated with calcium-sequestering organelles. J Cell Biochem 46: 78–85, 1991

    PubMed  Google Scholar 

  71. Hazarika P, Sheldon A, Kaetzel, MA, D az-Mu oz M, Hamilton SL, Dedman JR: Regulation of the sarcoplasmic reticulum Ca2+-release channel requires intact annexin VI. J Cell Biochem 46, 86–93, 1991b

    PubMed  Google Scholar 

  72. Yoshizaki H, Arai K, Mizoguchi T, Shiratsuchi M, Hattori Y, Nagoya T, Shidara Y, Maki M: Isolation and characterisation of an anticoagulant protein from human placenta. J Biochem 105: 178–183, 1989

    PubMed  Google Scholar 

  73. Gassama-Diagne A, Fauvel J, Chap H: Calcium-independent phospholipases from guinea pig digestive tract as probes to study the mechanism of lipocortin. J Biol Chem 5: 4309–4314, 1990

    Google Scholar 

  74. Theobald J, Smith PD, Jacob S, Moss SE: Expression of annexin VI in A431 carcinoma cells suppresses proliferation: a possible role for annexin VI in cell growth regulation. Biochim Biophys Acta 1223: 383–390, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, H.C., Moss, S.E. Functional and genetic analysis of annexin VI. Mol Cell Biochem 149, 293–299 (1995). https://doi.org/10.1007/BF01076591

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076591

Key words

Navigation