Skip to main content
Log in

The biochemistry of learning and memory

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

An overview of some of the biochemical and molecular events involved in the process of learning and memory are presented in a short review. Two invertebrate models of learning are considered: the gill-withdrawal reflex ofAplysia and avoidance learning inDrosophila melanogaster. Particular attention is paid to the biochemical mechanisms underlying both the development of long-term potentiation (LTP) and passive avoidance learning (PAL) in the young chick. The role of several biological molecules in learning and memory are considered, for example, protein kinase C (PKC), Ca++-Calmodulin kinase II (CaMKII), GAP-43, and glutamate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kandel ER, Hawkins RD: The biological basis of learning and individuality. Sci Amer 267(3): 78–86, 1992

    PubMed  Google Scholar 

  2. Dale N, Kandel E: L-glutamate may be the fast excitatory transmitter ofAplysia sensory neurons. Proc Natl Acad Sci USA 90: 7163–7167, 1993

    PubMed  Google Scholar 

  3. Qui Y, Chen C-N, Malone T, Richter L, Beckendorf SK, Davis RL: Characterization of the memory gene dunce ofDrosophila melanogaster. J Mol Biol 222: 553–565, 1991

    PubMed  Google Scholar 

  4. Levin LR Han P-L, Hwaung PM, Feinstein PG, Davis RL, Reed RR: TheDrosophila learning and memory gene rutabaga encodes a Ca+2/Calmodulin-responsive adenylyl cyclase. Cell 68: 479–489, 1992

    PubMed  Google Scholar 

  5. Drain P, Foleer E, Quinn WG: cAMP-dependent protein kinase and the disruption of learning in transgenic flies. Neuron 6: 71–82, 1991

    PubMed  Google Scholar 

  6. Pinter M, Friedrich P: The calcium-dependent proteolytic system calpain-calpastatin inDrosophila melanogaster. Biochem J 253: 467–473, 1988

    PubMed  Google Scholar 

  7. Muller U, Spatz H-C: Ca+2-dependent proteolytic modification of the cAMP-dependent protein kinase inDrosophila wild-type and dunce memory mutants. J Neurogenet 6: 95–114, 1989

    PubMed  Google Scholar 

  8. Aszodi A, Muller U, Friedrich P, Spatz H-C: Signal convergence on protein kinase A as a molecular correlate of learning. Proc Natl Acad Sci USA 88: 5832–5836, 1991

    PubMed  Google Scholar 

  9. Bliss TV, Gardner-Medwin AR: Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol Lond 232(2): 357–374, 1973

    PubMed  Google Scholar 

  10. Bliss TV, Lomo T: Long-lasting potentiation of synaptic tranmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol Lond 232(2): 331–356, 1973

    PubMed  Google Scholar 

  11. Doyer V, Laroche S: Linear relationship between the maintenance of hippocampal long-term potentiation and retention of an associative memory. Hippocampus 2(1): 39–48, 1992

    PubMed  Google Scholar 

  12. Bliss TV, Collingridge GL: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39, 1993

    PubMed  Google Scholar 

  13. Malenka RC, Kauer JA, Perkel DA, Nicoll RA: The impact of postsynaptic calcium on synaptic transmission its role in long-term potentiation. Trends Neurosci 12: 444–450, 1989

    PubMed  Google Scholar 

  14. Bar PR, Wiegant F, Lopes da Silva FH, Gispen Wh: Tetanic stimulation affects the metabolism of phosphoinositides in hippocampal slices. Brain Res 321: 381–385, 1984

    PubMed  Google Scholar 

  15. Akers R, Lovinger D, Colley P, Linden D, Routtenberg A: Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science 231: 587–589, 1986

    PubMed  Google Scholar 

  16. Reymann KG, Schulzeck K, Kase H, Matthies H-J: Phorbol esterinduced longterm potention is counteracted by inhibitors of protein kinase C Exp Brain Res 71: 227

  17. Routtenberg A, Lovinger D, Cain S, Akers R, Steward O: Effects of LTP on perforant path synapses in the intact hippocampus onin vitro phosphorylation of a 47 kDa protein (F1). Fed Proc 42: 755, 1983

    Google Scholar 

  18. Chetkovich DM, Gray R, Johnston D, Sweatt JD: N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated channel activity in area CA 1 of hippocampus. Proc Natl Acad Sci U.S.A. 88: 6467–6471, 1991

    PubMed  Google Scholar 

  19. Lisman J: The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci 17(10): 406–412, 1994

    PubMed  Google Scholar 

  20. Soderling TR: Calcium/calmodulin-dependent protein kinase II: role in learning and memory. Mol Cell Biochem 127/128: 93–101, 1993

    Google Scholar 

  21. Soderling TR, Tan SE, McGlade-McCulloh., E, Yamamoto H, Fukunaga K: Excitatory interactions between glutamate receptors and protein kinases. J Neurobiol 25(3): 304–311, 1994

    PubMed  Google Scholar 

  22. Erondu NE, Kennedy MB: Regional distribution of type II calcium+2/calmodulin dependent protein kinase in rat brain. J Neurosci 5: 3270–3277, 1985

    PubMed  Google Scholar 

  23. Kennedy MB, Bennett MK, Erondu NG: Biochemical and immunochemical evident that the ‘major postsynaptic density protein’ is a subunit of a calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 80: 7357–7461, 1983

    PubMed  Google Scholar 

  24. Valtorta F, Benefanti F, Greengard P: Structure and function of synapsins. J Biol Chem 267: 7195–7198, 1992

    PubMed  Google Scholar 

  25. Greengard P, Valtorta F, Czernik AJ Benfenati F: Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259: 780–785, 1993

    PubMed  Google Scholar 

  26. McGlade-McColloh E, Yamamoto H, Tan SE, Brickey DA, Soderling TA: Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature 362: 640–642, 1993

    PubMed  Google Scholar 

  27. Lisman J: A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci 86(23): 9574–9578, 1989

    PubMed  Google Scholar 

  28. Hanson PI, Schulman H: Neuronal Ca+2/calmodulin-dependent protein kinases. In Richardson, Abelson Meister and Walsh (eds) Ann Rev Biochem 1992. Annual Reviews Inc., Palo Alto, 1992

    Google Scholar 

  29. Silva A, Stevens CF, Tonegawa S, Wang Y: Deficient hippocampal long-term potentiation in a-calcium-calmodulin kinase II mutant mice. Science 257: 201–206, 1992

    PubMed  Google Scholar 

  30. Silva AJ, Paylor R, Wehner JA, Tonegawa S: Impaired spatial learning in alphacalcium-calmodulin kinase II mutant mice. Science 257: 206–211, 1992

    PubMed  Google Scholar 

  31. Lynch MA, Voss KL, Rodriguez J, Bliss TV: Increase in synaptic vesicle proteins accompanies long-term potentiation in dentate gyrus. Neurosci 60(1): 1–5, 1994

    Google Scholar 

  32. Dumuis A, Sebben M, Haynes L, Pin J-P, Bockaert J: NMDA receptors activate the arachidonic acid cascade, system in striatal neurons. Nature 366: 68–70, 1988

    Google Scholar 

  33. Williams JH, Errington ML, Lynch MA, Bliss TV: Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature. 341: 739–742, 1989

    PubMed  Google Scholar 

  34. Miller B, Sarantis M, Traynelis SF, Attwell D: Potentiation of NMDA receptor currents by arachidonic acid. Nature, 355: 722–725 1992

    PubMed  Google Scholar 

  35. Arai A, Lynch G: Antagonists of the platelet-activating-factor receptor block longterm potentiation in hippocampal slices. Eur J Neurosci 4: 411–419, 1992

    PubMed  Google Scholar 

  36. Collingridge GL: The mechanism of induction of NMDA receptor-dependent longterm potentiation in the hippocampus. Expl Physiol 77: 771–97, 1992

    Google Scholar 

  37. Hawkins RD, Zhuo M, Arancio O: Nitric oxide and carbon monoxide as possible retrograde messengers in hippocampal long-term potentiation. J Neurobiol 25(6): 652–665, 1994

    PubMed  Google Scholar 

  38. Rebeck GW, Marzloff K, Hyman BT: The pattern of NADPH-diaphorase staining, a marker of nitric oxide synthase activity, is altered in the perforant pathway terminal zone in Alzheimer's disease. Neurosci Lett 152: 165–168, 1993

    PubMed  Google Scholar 

  39. Artola A, Singer W: Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16(11): 480–487, 1993

    PubMed  Google Scholar 

  40. Wang LY, Salter MW, MacDonald JF: Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases. Science 253(5024): 1132–1135, 1991

    PubMed  Google Scholar 

  41. Greengard P, Jen J, Nairn AC, Stevenns CF: Enhancement of the glutamate response by cAMP-dependent protein kinase in hippocampal neuron. Science 253(5024): 1135–1138, 1991

    PubMed  Google Scholar 

  42. Davis S, Butcher SP, Morris RG: The NMDA receptor antagonist D-2-amino-5phosphonopentanoate (D-AP5) impairs spatial learning and LTPin vivo at intracerebral concentradons comparable to those that block LTPin vitro J Neurosci 12(1): 21–34, 1992

    PubMed  Google Scholar 

  43. Upchurch M, Wehner JM: Differences between inbred strains of mice in Morris water maze. Behav Genet 18(1): 55–68, 1988

    PubMed  Google Scholar 

  44. Wehner JM, Sleight S, Upchurch M: Hippocampal protein kinase C activity is reduced in poor spatial learners. Brain Res 523(2): 181–7, 1990

    PubMed  Google Scholar 

  45. Moser E, Moser M-B, Andersen P: Potential of dentate synapses initiated by exploratory learning in rats: dissociation from brain temperature, motor activity, and arousal. Learn Mem 1: 55–73, 1994

    PubMed  Google Scholar 

  46. Ng KT, Gibbs ME, Crowe SF, Sedman GL, Hua F, Zhao W, ODowd B, Rickard N, Gibbs CL, Sykova E, Svoboda J, Jendelova P: Molecular mechanisms of memory formation. Mol Neurobiol 5: 333–350, 1991

    PubMed  Google Scholar 

  47. Gibbs ME, Ng KT: Psychobiology of memory: towards a model of memory formation. Biobehav Rev 1: 113–136, 1977

    Google Scholar 

  48. Gibbs ME: Behavioral and pharmacological unravelling of memory formation. Neurochem Res 16(6): 715–726, 1991

    PubMed  Google Scholar 

  49. Andrew RJ: Neural and Behavioural Plasticity. The Use of the Domestic Chick as a Model. Oxford University Press, New York, 1991

    Google Scholar 

  50. Rose SP, Jork R: Long-term memory formation in chicks in blocked by2deoxygalactose, a fucose analog. Behav Neural Biol 48(2): 246–258, 1987

    PubMed  Google Scholar 

  51. Perry EK: The cholinergic hypothesis—ten years old. Br Med Bull 63–69, 1986

  52. Slotkin TA, Nemeroff CB, Bissette G, Seidler FJ: Overexpression of the high affinity choline transporter in cortical regions affected by Alzheimer's Disease. J Clin Invest 94: 969, 1994

    Google Scholar 

  53. Rose SP, Csillag A: Passive avoidance training results in lasting changes in deoxyglucose metabolism in left hemisphere regions of chick brain. Behav Neural Biol 44(2): 315–324, 1985

    PubMed  Google Scholar 

  54. Kossut M, Rose SP: Differential 2-deoxyglucose uptake into chick brain structures during passive avoidance training. Neuroscience 12(3): 971–7, 1984

    PubMed  Google Scholar 

  55. Sukumar R, Rose SP, Burgoyne RD: Increased incorporation of [3H)fucose into chick brain glycoproteins following training on a passive avoidance task. J Neurochem 34(4): 1000–1006, 1980

    PubMed  Google Scholar 

  56. Burgoyne RD, Rose SP: Subcellular localization of increased incorporation of [3H) fucose following passive avoidance learning in the chick. Neurosci Lett 19(3): 343–348, 1980

    PubMed  Google Scholar 

  57. McCabe NR, Rose SP: Passive avoidance training increases fucose incorporation into glycoproteins in chick forebrain slicesin vitro. Neurochem Res 10(8): 1083–1095, 1985

    PubMed  Google Scholar 

  58. Schliebs R, Rose SP, Stewart MG: Effect of passive avoidance training onin vitro protein synthesis in forebrain slices of day-old chicks. J Neurochem 44(4): 1014–1028, 1985

    PubMed  Google Scholar 

  59. McCabe N, Rose SP: Increased fucosylation of chick brain proteins following training: effects of cycloheximide. J Neurochem 48(2): 538–542, 1987

    PubMed  Google Scholar 

  60. Lossner B, Rose SP: Passive avoidance training increases fucokinase activity in right forebrain base of day old chicks. J Neurochem 41: 1357–1363, 1983

    PubMed  Google Scholar 

  61. Rose RP, Harding S: Training increases [3H) fucose incorporation in chick brain only if followed by memory storage. Neuroscience 12(2): 663–667, 1984

    PubMed  Google Scholar 

  62. Rose SP, Jork R: Long-term memory formation in chicks in blocked by 2-deoxygalactose, a fucose analog. Behav Neural Biol 48(2): 246–258, 1987

    PubMed  Google Scholar 

  63. Barber AJ, Rose SP: Amnesia induced by 2-deoxygalactose in the day-old chick: lateralization of effects in two different one-trial learning tasks. Behav Neural Biol 56(1): 77–88, 1991

    PubMed  Google Scholar 

  64. Bullock S, Potter J, Rose SP: Effects of the amnesic agent 2-deoxygalactose on incorporation of fucose into chick brain glycoproteins. J Neurochem 54(1): 135–142, 1990

    PubMed  Google Scholar 

  65. Bullock S, Rose SP: Glycoproteins modulate changes in synaptic connectivity in memory formation. Biochem Soc Trans 20(2): 412–414, 1992

    PubMed  Google Scholar 

  66. Bullock S, Rose SP, Zamani R: Characterisation and regional localisation of preand postsynaptic glycoproteins of the chick forebrain showing changed fucose incorporation. J Neurochem 58(6): 2145–2154, 1992

    PubMed  Google Scholar 

  67. Rose SP: How chicks make memories: the cellular cascade from cfos to dendritic remodelling. Trends Neurosci 14(9): 390–397, 1991

    PubMed  Google Scholar 

  68. Scholey AB, Rose SP Zamani MR, Bock E, Schachner M: A role for the neural cell adhesion molecule in a late, consolidating phase of glycoprotein synthesis six hours following passive avoidance training of the young chick. Neuroscience 55(2): 499–509, 1993

    PubMed  Google Scholar 

  69. Crowe SF, Zhao WQ, Sedman GL, Ng KT: 2-deoxygalactose interferes with an intermediate processing stage of memory. Behav Neural Biol 61(3): 206–213, 1994

    PubMed  Google Scholar 

  70. Ali SM, Bullock S, Rose SP: Phosphorylation of synaptic proteins in chick forebrain: changes with development and passive avoidance training. J Neurochem 50(5): 1579–1587, 1988

    PubMed  Google Scholar 

  71. Bullock S, De Graan PN, Oestreicher AB, Gispen WH, Rose SP: Identification of a 52 kDa chick brain membrane protein showing changed phosphorylation after passive avoidance training as B-50 (GAP-43). Neurosci Res Comm 6(3): 181–6, 1990

    Google Scholar 

  72. Burchuladze R, Potter J, Rose SP: Memory formation in the chick depends on membrane-bound protein kinase C. Brain Res 535(1): 131–8, 1990

    PubMed  Google Scholar 

  73. Zhao WQ, Sedman GL, Gibbs ME, Ng KT: Effect of PKC inhibitors and activators on memory. Behav Brain Res 60(2): 151–60, 1994

    PubMed  Google Scholar 

  74. Serrano PA, Beniston DS, Oxonian MG, Rodrigues WA, Rosenzweig MR, Bennett EL: Differential effects of protein kinase inhibitors and activators on memory formation in the 2-day-old chick. Behav Neural Biol 61(1): 60–72, 1994

    PubMed  Google Scholar 

  75. Holscher C, Rose SP: Inhibiting synthesis of the putative retrograde messenger nitric oxide results in amnesia in a passive avoidance task in chicks. Brain Res 619: 18994, 1993

    Google Scholar 

  76. Holscher C, Rose SP: An inhibitor of nitric oxide synthesis prevents memory formation in the chick. Neurosci Lett. 145: 165–167, 1992

    PubMed  Google Scholar 

  77. Rickard NS, Ng KT, Gibbs ME: A nitric oxide agonist stimulates consolidation on long-term memory in the l-day-old chick. Behav Neurosci 108(3): 640–644, 1994

    PubMed  Google Scholar 

  78. Holscher C, Rose SP: Inhibitors of phospholipase A2 produce amnesia for a passive avoidance task in the chick. Behav Neural Biol 61(3): 225–232, 1994

    PubMed  Google Scholar 

  79. Burchladze R, Rose SP: Memory formation in day-old chicks requires NMDA but not non-NMDA glutamate receptors. Eur J Neurosci 4: 533–538, 1992

    PubMed  Google Scholar 

  80. Stewart MG, Bourne RC, Steele RJ: Quantitative autoradiographic demonstration of changes in binding to NMDA-sensitive [3H)AMPA receptors in chick forebrain 30 min after passive avoidance training. Eur J Neurosci 4: 936–943, 1992

    PubMed  Google Scholar 

  81. Bullock S, Rose SP, Pearce B, Potter J: Training chicks on a passive avoidance task modulates glutamate-stimulated inositol phosphate accumulation. Eur J Neurosci 5: 43–48, 1993

    PubMed  Google Scholar 

  82. Rickard NS, Poot AC, Gibbs ME, Ng KT: Both non-NMDA and NMDA glutamate receptors are necessary for memory consolidation in the day-old chick. Behav Neural Biol 62(1): 33–40, 1994

    PubMed  Google Scholar 

  83. Holscher C: Inhibitors of metabotropic glutamate receptors produce amnestic effects in chicks. Neuroreport 5(9): 1037–1040, 1994

    PubMed  Google Scholar 

  84. Fagnou DD, Tuchek JM: Learning impairment in 1–2 day old chicks. Submitted to Epilepsia.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagnou, D.D., Tuchek, J.M. The biochemistry of learning and memory. Mol Cell Biochem 149, 279–286 (1995). https://doi.org/10.1007/BF01076589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076589

Key words

Navigation