Skip to main content
Log in

Excitatory amino acid receptor-mediated neuronal signal transduction: modulation by polyamines and calcium

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The excitatory amino acids (EAA), L-glutamate and L-aspartate were initially advanced as excitatory neurotransmitters some 30 years ago but in the past few years investigations on EAA have proceeded rapidly from the identification of the putative neurotransmitters and characterization of their receptors to the clarification of their role in development, learning, memory, and neuropathology. The NMDA (N-methyl-D-aspartate) class of glutamate receptor has been the subject of much recent interdisciplinary study, as NMDA receptors render over stimulated neurons susceptible to injury and death. This review is focused on the involvement of polyamines in EAA receptor-mediated neuronal signal trasduction mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D-AP5:

2-amino-5-phosphonovaleric acid

D-AP7:

2-amino-7-phosphonovaleric acid

DFMO:

α difluoromethylornithine

EGTA:

ethylene-bis-(oxyethelene nitrilo) tetra acetic acid

Hepes:

N-2-hydroxyethyl piperazine-N′-2-ethane sulfonic acid

NMDA:

N-methyl-D-aspartate

NE:

norepinephrine

ODC:

ornithine decarboxylase

PA:

polyamines

PSS:

physiological saline solution

Tris:

Tris (hydoxymethyl) amino methane

References

  1. Trends in Neurosciences. Special issue on Excitatory Amino Acids 12: pp 263–302, July, 1989

  2. McBain CJ, Mayer ML: NMDA receptor structure and function. Physiol Rev 74(3): 723–760, 1994

    PubMed  Google Scholar 

  3. Schoepfer R, Monyer H, Somme B et al.: Molecular biology of glutamate receptors. Progr Neurobiol 42(2): 353–357, 1994

    PubMed  Google Scholar 

  4. Michaelis EK: Two different families of NMDA receptors in mammalian brain: physiological function and role in neuronal development and degeneration. Adv Exp Med Biol 34: 119–128, 1993

    Google Scholar 

  5. Malenka RC, Nicoll RA: NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. TINS 16(2): 521–527, 1993

    PubMed  Google Scholar 

  6. Scatton B: The NMDA receptor complex. Fund Clin Pharmacol 7(8): 389–400, 1993

    Google Scholar 

  7. Collingridge GL, Lester RAJ: Excitatory amino acid receptors in the vertebrate central nervous system. Physiol Rev 40: 143–210, 1989

    Google Scholar 

  8. Mayer ML, Vycklicky L, Sernagor E: A physiologist's view of the N-methyl-D-aspartate receptor: an allosteric ion channel with multiple regulatory sites. Drug Devel Res 17: 263–280, 1989

    Google Scholar 

  9. Monaghan DT, Bridges RJ, Cotman CW: The excitatory amino acid receptors:their classes, pharmacology and distinct properties in function of the central nervous system. Ann Rev Pharmacol Toxicol 29: 365–402, 1989

    Google Scholar 

  10. Ransom RW, Stec NL Comparative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines. J Neurochem 51: 830–836, 1988

    PubMed  Google Scholar 

  11. Mayer ML, Miller RJ: Excitatory amino acid receptors, second messengers and regulation of intracellular Ca2+ in mammalian neurons. Trends Pharm Sci 11: 254–260, 1990

    PubMed  Google Scholar 

  12. Chetkovich DM, Gray R, Johnston D, Sweatt JD: N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proc Natl Acad Sci USA 88, 6696–6700, 1991

    PubMed  Google Scholar 

  13. Kudo Y, Ito K, Miyakawa H, Izumi Y, Ogura A, Kato H: Cytoplasmic calcium elevation in hippocampal granule cell induced by perforant path stimulation and L-glutamate application. Brain Res 407(1): 168–172, 1987

    PubMed  Google Scholar 

  14. Agoston DV, Kuhnt U: Increased calcium uptake of presynaptic terminals during longterm potentiation in hippocampal slices. Exp Brain Res 62(3): 663–668, 1986

    PubMed  Google Scholar 

  15. Connor JA, Wadman WJ, Hockberger PE, Wong RK: Sustained dendritic gradients of calcium induced by excitatory amino acids in CA1 hippocampal neuron. Science 240: 649–653, 1988

    PubMed  Google Scholar 

  16. Berdichevsky E, Riveros N, Sanchez-Armass S, Orrego F: Kainate, N-methyl-D-aspartate, and other excitatory amino acids increase calcium influx into rat brain cortex cellsin vitro. Neurosci Lett 36: 75–80, 1983

    PubMed  Google Scholar 

  17. Berridge MJ, Irvine RF: Inositol triphosphate: a novel second messenger in cellular signal transduction. Nature 312: 315–320, 1984

    PubMed  Google Scholar 

  18. Nishizuka Y: Studies and perspectives of protein kinase C. Science 233: 305–312, 1986

    PubMed  Google Scholar 

  19. Cockcroft S: Polyphosphoinositide phosphodiesterase: regulation by a novel guanine nucleotide binding protein, Gp. Trends Biochem Sci 12: 75–78, 1987

    Google Scholar 

  20. Lovinger DM, Wong KL, Murakami K, Routenberg A: Protein kinase-C inhibitors diminate hippocampal long-term potentiation. Brain Res 436(1): 177–183, 1987

    PubMed  Google Scholar 

  21. Strong JA, Fox AP, Tsien RW, Kaczmarek LK: Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature 325: 714–717, 1987

    PubMed  Google Scholar 

  22. Roberts PJ: In: PJ Robert, J Storm-Mathison, HF Bradford (eds) Excitatory Amino Acids. MacMillan, Basingstoke, 1986, pp 177–208

    Google Scholar 

  23. Starke KA: Presynaptic receptors. Annu Rev Pharmacol 21: 7–30, 1981

    Google Scholar 

  24. Monahan JB, Michel J: Identification and characterization of NMDA specific3H-glutamate recognition site in synaptic plasma membrane. J Neurochem 48: 1699–1708, 1984

    Google Scholar 

  25. Fagg GE, Matus A: Selective association of NMDA and quisqualate types of L-glutamate receptor with brain post synaptic densities. Proc Natl Acad Sci USA 81: 6876–6880, 1984

    PubMed  Google Scholar 

  26. Sarantis M, Everett K, Attwell D: A presynaptic action of glutamate at the cone output synapse. Nature 332(6163): 451–453, 1988

    PubMed  Google Scholar 

  27. Arvin B, Neville LF, Pan J, Roberts PJ: 2-Chloroadenosine attenuates kainic acid-induced toxicity within the rat striatum: relationship to release of glutamate and calcium influx. Br J Pharmacol 90(1): 225–235, 1989

    Google Scholar 

  28. Monahan JB, Hoof HF, Michel J, Compton RP: Effects of guanine nucleotides on NMDA receptor-ligand interactions. Molec Pharmacol 34(2): 111–116, 1988

    Google Scholar 

  29. Koenig H, Iqbal Z, Goldstone, AD, Lu, CY: Polyamines mediate NMDA receptor responses in synaptosomes. 13th Annual meeting Int Soc Neurochem, Australia, July 1991

  30. Iqbal Z, Koenig H, Goldstone, AD, Lu CY, Siddiqui F: Presynaptic NMDA receptors regulate polyamine synthesis, Ca2+ fluxes, and transmitter release at axon terminals. J Cereb Blood Flow Metab 11: S114, 1991

    PubMed  Google Scholar 

  31. Koenig H, Iqbal Z, Goldstone, AD, Lu, CY, Siddiqui F: Presynaptic NMDA receptor responses in synaptosomes. Neurochem Internat 16(Suppl 1): 186, 1990

    Google Scholar 

  32. Iqbal Z, Koenig H: NMDA receptors are coupled to ornithine decarboxylase (ODC) and stimulate the ODC/polyamine cascade in synaptic plasma membrane vesicles. Fidia Research Foundation Symposium on Excitatory Amino Acids. Padova, Italy, May 1990

  33. Iqbal Z, Koenig H: NMDA receptors activate ornithine decarboxylase regulated polyamine synthesis in synaptosomal plasma membrane vesicles. Trans Am Soc Neurochem 21(1): 267, 1990

    Google Scholar 

  34. Iqbal Z, Koenig H, Goldstone AD, Lu CY, Siddiqui F: Polyamines and Ca2+ as mediators of NMDA receptor excitotoxicity in embryonic chick retina: neuroprotection by α-difluoromethylornithine. J Neurochem 52: S42, 1989

    Google Scholar 

  35. Koenig H, Iqbal Z, Goldstone AD, Siddiqui F, Lu CY: NMDA receptor transduction: Polyamines as second messengers mediating agonistimulated Ca2+ influx and transmitter release. J Neurochem 52: S42, 1989

    Google Scholar 

  36. Koenig H, Goldstone AD, Iqbal Z, Lu CY, Siddiqui F: Role of polyamines in signal transduction at NMDA receptors. Trans Am Soc Neurochem 20(1): 271, 1989

    Google Scholar 

  37. Drejer J, Honore T, Schousboe A: Excitatory amino acid induced release of3H-GABA from culture mouse cerebral cortex interneurons. J Neuroscie 7(9): 2910–2916, 1987

    Google Scholar 

  38. Snell LD, Johnson KM: Antagonism of NMDA-induced transmitter release in the rat striatum by phencyclidine-like drugs and its relationship to turning behavior. J Pharmacol Exp Therap 235(1): 50–57, 1985

    Google Scholar 

  39. Snell LD, Johnson KM: Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs. J Pharmacol Exp Therap 238(3): 939–946, 1986

    Google Scholar 

  40. Jhamandas K, Marien M: Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkaphalin analogue. Br J Pharmacol 90(4): 641–650, 1987

    PubMed  Google Scholar 

  41. Jones SM, Snell LD, Johnson KM: Phencyclidine selectivity inhibits NMDA-induced hippocampal3H-norepinephrine release. J Pharmacol Exp Therap 240(2): 492–497, 1987

    Google Scholar 

  42. Hopkins WF, Johnston D: Science 226: 350–352, 1984

    PubMed  Google Scholar 

  43. Haas HL: In: W Seifer (ed) Neurobiology of the Hippocampus. Academic Press, 1983, pp 139–155

  44. Haas HL, Greene RW: In: M Avioli, TA Reader, RW Dykes, P Gloor (eds) Neurotransmitters and Cortical Function. Plenum Press, 1988, pp 483–494

  45. Burke SP, Nadler JV: Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: effects of adenosine and baclofen. J Neurochem 51: 1541–1551, 1988

    PubMed  Google Scholar 

  46. Matthews HR: Polyamines, chromatin structure and transcription. Bioessays 15(8): 561–566, 1993

    PubMed  Google Scholar 

  47. Kaminska B: Polyamines as regulators of cell activation. Acta Biochimica Polonica 40(3): 375–382, 1993

    PubMed  Google Scholar 

  48. Parchment RE: The implications of a unified theory of programmed cell death, polyamines. oxyradicals and histogenesis in the embryo. Int J Develop Biol 37(1): 75–83, 1993

    Google Scholar 

  49. Casero RA Jr, Pegg AE: Spermidine/spermine N. acetyltransferase—the turning point in polyamine metabolism. FASEB J 7(8): 653–681, 1993

    PubMed  Google Scholar 

  50. Scott RH, Sutton KG, Dolphin AC: Interaction of polyamines with neuronal ion channels. TINS 18(4): 153–160, 1993

    Google Scholar 

  51. Williams K, Romano C, Dichter M, Molinoff PB: Modulation of the NMDA receptor by polyamines. Life Sci 48(6):469–498, 1991

    PubMed  Google Scholar 

  52. Heby O, Holm I, Persson L: Polyamine-mediated control of ODC and SAM decarboxylase expression in mammalian cells. Biochem Soc Trans 18(6): 1084–1087, 1990

    PubMed  Google Scholar 

  53. Morgan DM: Polyamines and cellular regulation: perspectives. Biochem Soc Trans 18(6): 1084–1087, 1990

    PubMed  Google Scholar 

  54. Koenig H, Goldstone AD, Lu CY, Iqbal Z, Fan C-C, Trout JJ: Polyamines, hormone receptors and calcium fluxes. In: U Bachrach, YM Heimer (eds) The Physiology of Polyamines. CRC Press, vol. 1, 1989, pp 57–81

  55. Iqbal Z, Koenig H: Polyamines appear to be second messengers in mediating calcium fluxes and neurotransmitter release in potassium depolarized synaptosomes. Biochem Biophys Res Commun 133: 563–573, 1985

    PubMed  Google Scholar 

  56. Trout JJ, Lu CY, Goldstone AD, Iqbal Z, Koenig H: Polyamines mediate coronary transcapillary macromolecular transport in the calcium paradox. J Mol Cell Card 26: 369–377, 1994

    Google Scholar 

  57. Trout JJ, Koenig H, Goldstone AD, Iqbal Z, Lu CY, Siddiqui F: NMDA receptor excitotoxicity involves activation of polyamine synthesis: protection by difluoromethyl ornithine. J Neurochem 60: 352–355 1992

    Google Scholar 

  58. Johnson JW, Ascher P: Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104): 529–531, 1987

    PubMed  Google Scholar 

  59. Reynolds IJ, Murphy SN, Miller RJ:3H-labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc Nat Acad Sci USA 84(21): 7744–7748, 1987

    PubMed  Google Scholar 

  60. Iversen LL: MK-801 (Dizocilpine maleate)-NMDA receptor antagonist. Neurotransmissions 10: 1–4, 1994

    Google Scholar 

  61. Siddiqui, F, Iqbal, Z: Regulation of NMDA receptor-mediated45Ca2+ transport and epinephrine release in rat hippocampus by polyamines. Neurochem Res 19: 1421–1429, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, Z. Excitatory amino acid receptor-mediated neuronal signal transduction: modulation by polyamines and calcium. Mol Cell Biochem 149, 233–240 (1995). https://doi.org/10.1007/BF01076582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076582

Key words

Navigation