Skip to main content
Log in

Defective ANF-R2/ANP-C receptor-mediated signalling in hypertension

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In the present studies we have shown that atrial natriuretic factor (peptide) receptor of ANF-R2/ANP-C type is coupled to adenylyl cyclase/cAMP signal transduction system through Gi-regulatory protein and is implicated in mediating some of the physiological responses of atrial natriuretic factor or peptide (ANP). ANF-R2/ANP-C receptor-mediated adenylyl cyclase inhibition was altered in hypertension. This alteration was tissue specific. In heart, aorta, brain and adrenal, the extent of inhibition of adenylyl cyclase by ANP was enhanced in SHR as compared to age-matched WKY, whereas in platelets, the ANP-mediated inhibition was completely attenuated. The enhanced inhibition of adenylyl cyclase by ANP was also observed in heart and aorta from DOCA-salt hypertensive rats. In addition, the augmented inhibition of adenylyl cyclase by ANP was observed in 2 weeks and older ANP but not in 3–5 days old SHR. Similarly, in DOCA-salt hypertensive rats, the enhanced inhibition of adenylyl cyclase by ANP was observed after 2 weeks of DOCA-salt treatment when the blood pressure was also enhanced, however one week of DOCA-salt treatment did not result in an augmented blood pressure and augmented ANP-mediated inhibition of adenylyl cyclase, suggesting that blood pressure increase may be responsible for the enhanced responsiveness of ANP to adenylyl cyclase inhibition. However, in genetic model of hypertension, the increased inhibition of adenylyl cyclase by ANP at 2 weeks of age (when the blood pressure is normal) may be implicated in the pathogenesis of hypertension. The augmented inhibition of adenylyl cyclase in cardiovascular tissues from SHR and DOCA-salt hypertensive rats may be due to the upregulation of ANF-R2/ANP-C receptors or due to the amplification of post-receptor signalling mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BNP:

brain natriuretic peptide

ANP:

atrial natriuretic peptide or factor

CNP:

C-type natriuretic peptide

GC:

guanylyl cyclase

NPR:

natriuretic peptide receptor

Gs:

stimulatory guanine nucleotide regulatory protein

Gi:

inhibitory guanine nucleotide regulatory protein

WKY:

Wistar-Kyoto rats

SHR:

spontaneously hypertensive rats

PT:

pertussis toxin

References

  1. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H: A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sci 28: 89–94, 1981

    PubMed  Google Scholar 

  2. de Bold AJ: Atrial natriuretic factor of the rat heart. Studies on isolation and properties. Proc Soc Exp Biol Med 170: 133–138, 1982

    PubMed  Google Scholar 

  3. Anand-Srivastava MB, Trachte GJ: Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev 45: 455–497, 1993

    PubMed  Google Scholar 

  4. Sudoh T, Kangawa K, Minamino N, Matsuo H: A new natriuretic peptide in porcine brain. Nature (Lond) 332: 78–81, 1988

    Google Scholar 

  5. Sudoh T, Minamino N, Kangawa K, Matsuo H: C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168: 863–870, 1990

    PubMed  Google Scholar 

  6. Sudoh T, Minamino N, Kangawa K, Matsuo H: Brain natriuretic peptide-32: N-terminal six amino acid extended form of brain natriuretic peptide identified in porcine brain. Biochem Biophys Res Commun 155: 726–732, 1988

    PubMed  Google Scholar 

  7. Kambayashi Y, Nakao K, Mukoyama M, Saito Y, Ogawa Y, Shiono S, Inouye K, Yoshida N, Imura H: Isolation and sequence determination of human brain natriuretic peptide in human atrium. FEBS Lett 259: 341–345, 1990

    PubMed  Google Scholar 

  8. Chinkers M, Garbers DL, Chang M-S, Lowe DG, Chin H, Goeddel DV, Schulz S: A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338: 78–83, 1989

    PubMed  Google Scholar 

  9. Lowe DG, Chang MS, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV: Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8: 1377–1384, 1989

    PubMed  Google Scholar 

  10. Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL: The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58: 1155–1162, 1989

    PubMed  Google Scholar 

  11. Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV: Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclase. Nature 341: 68–72, 1989

    PubMed  Google Scholar 

  12. Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenk DB: Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem 263: 9395–9401, 1988

    PubMed  Google Scholar 

  13. Anand-Srivastava MB, Srivastava AK, Cantin M: Pertussis-toxin attenuates atrial natriuretic factor-mediated inhibition of adenylate cyclase. Involvement of inhibitory guanine nucleotide regulatory protein. J Biol Chem 262: 4931–4934, 1987

    PubMed  Google Scholar 

  14. Anand-Srivastava MB, Sairam MR, Cantin M: Ring-deleted analogs of atrial natriuretic factor inhibit adenylate cyclase/cAMP system. Possible coupling of clearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signal transduction system. J Biol Chem 265: 8566–8572, 1990

    PubMed  Google Scholar 

  15. Hirata M, Chang C-H, Murad F: Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovin aortic smooth muscle cells. Biochim Biophys Acta 1010: 346–351, 1989

    PubMed  Google Scholar 

  16. Gilman AG: G-proteins and dual control of adenylate cyclase Cell 36: 577–579, 1984

    PubMed  Google Scholar 

  17. Gilman AG: G-proteins: transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649, 1987

    PubMed  Google Scholar 

  18. Stryer L, Bourne HR: G-proteins: a family of signal transducers. Annu Rev Cell Biol 2: 391–419, 1986

    PubMed  Google Scholar 

  19. Murakami T, Yasuda H: Rat heart cell membranes contain three substrates for cholera toxin-catalyzed ADP-ribosylation and a single substrate for pertussis toxin-catalyzed ADP-ribosylation. Biochem Biophys Res Commun 138: 1355–1361, 1986

    PubMed  Google Scholar 

  20. Robishaw JD, Smigel MD, Gilman AG: Molecular basis for two forms of the G-protein that stimulates adenylyl cyclase. J Biol Chem 261: 9587–9590, 1986

    PubMed  Google Scholar 

  21. Bray P, Caster A, Simons C, Guo V, Puckett C, Kamholz J, Spiegel A, Nirenberg M: Human cDNA clones for four species of Gs signal transduction protein. Proc Natl Acad Sci USA 83: 8893–8897, 1986

    PubMed  Google Scholar 

  22. Jones DT, Reed RR: Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem 262: 14241–14249, 1987

    PubMed  Google Scholar 

  23. Itoh H, Toyama R, Kozasa T, Tsukamoto T, Matsuoka M, Kaziro Y: Presence of three distinct molecular species of Gi protein alpha subunit. Structure of rat cDNAs and human genomic DNAs. J Biol Chem 263: 6656–6664, 1988

    PubMed  Google Scholar 

  24. Cassel D, Pfeuffer T: Mechanism of cholera toxin action: covalent modification of the guanyl nudeotide-binding protein of the adenylyl cyclase system. Proc Natl Acad Sci USA 75: 2669–2672 1987

    Google Scholar 

  25. Hewlett G, Cronin MI, Moss J, Anderson H, Myers GA, Pearson RD: Adv Cyclic Nucleotide Protein Phosphorylation Res 17: 173–182, 1982

    Google Scholar 

  26. Ui M: Islet-activating protein, pertussis-toxin: a probe for functions of inhibitory guanine nucleotide regulatory component of adenylyl cyclase. Trends Pharmacol Sci 5: 277–279, 1984

    Google Scholar 

  27. Katada T, Ui M: Islet-activating protein, a modifier of receptor-mediated regulation of rat islet adenylyl cyclase. J Biol Chem 256: 8310–8317, 1981

    PubMed  Google Scholar 

  28. Katada T, Ui M: ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylyl cyclase activity. J Biol Chem 257: 7210–7216, 1982

    PubMed  Google Scholar 

  29. Hazeki O, Ui M: Modification by islet-activating protein of receptor mediated regulation of cyclic AMP accumulation in isolated rat heart cells. J Biol Chem 256: 2856–2862, 1981

    PubMed  Google Scholar 

  30. Neer EJ, Lok JM, Wolf LG: Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J Biol Chem 259: 14222–14229, 1984

    PubMed  Google Scholar 

  31. Schenk DB, Phelps MN, Porter JG, Scarborough RM, McEnroe GA, Lewidci JA: Identification of the receptor for atrial natriuretic factor on cultured vascular cells. J Biol Chem 260: 14887–14890, 1985

    PubMed  Google Scholar 

  32. Leitman DC, Andresen JW, Catalano RM, Waldman SA, Tuan JJ, Murad R: Atrial natriuretic peptide binding, cross-linking, and stimulation of cyclic GMP accumulation and particulate guanylyl cyclase activity in cultured cells. J Biol Chem 263: 3720–3728, 1988

    PubMed  Google Scholar 

  33. Anand-Srivastava MB, Gutkowska J, Cantin M: The presence of atrialnatriuretic-factor receptors of ANF-R2 subtype in rat platelets. Biochem J 278: 211–217, 1991

    PubMed  Google Scholar 

  34. Bianchi C, Anand-Srivastava MB, DeLean A, Gutkowska J, Forthomme D, Genest J, Cantin M: Localization and characterization of specific receptors for atrial natriuretic factor in the ciliary processes of the eye. Curr Eye Res 5: 283293, 1986

    Google Scholar 

  35. Bianchi C, Thibault G, Wrobel-Konrad E, DeLean A, Genest J, Cantin M: Atrial natriuretic factor binding sites in experimental congestive heart failure. Am J Physiol 257: F515-F523, 1989

    PubMed  Google Scholar 

  36. Konrad EM, Bianchi C, Thibault G, Garcia R, Pelletier S, Genest J, Cantin M: Localization and characterization of binding sites for circulating and cerebroventricular atrial natriuretic factor in rat choroid plexus. Neuroendocrinology 51: 304–314, 1990

    PubMed  Google Scholar 

  37. DeLean A, Gutkowska J, McNicoll N, Schiller PW, Cantin M, Genest J: Characterization of specific receptors for atrial natriuretic factor in bovine adrenal zona glomerulosa. Life Sci 35: 2311–2318, 1984

    PubMed  Google Scholar 

  38. Ohashi M, Rujio N, Nawata H, Matsuo H, Kato K: Human atrial natriuretic polypeptide binding sites in human adrenal membrane fractions. Regul Pept 21: 271–278, 1988

    PubMed  Google Scholar 

  39. Leitman DC, Andresen JW, Kuno T, Kamisaki Y, Chang J-K Murad F: Identification of multiple binding sites for atrial natriuretic factor by affinity cross-linking in cultured endothelial cells. J Biol Chem 261: 11650–11655, 1986

    PubMed  Google Scholar 

  40. Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA, Lewidci JA: Physiological role of silent receptors of atrial natriuretic factor. Science (Washington DC) 238: 675–678, 1987

    Google Scholar 

  41. Tseng Y-C, Lahiri S, Sellitti DF, Burman KD, D'Avis JC, Wartofsky L: Characterization by affinity cross-linking of a receptor for atrial natriuretic peptide in cultured human thyroid cells associated with reductions in both adenosine 3′, 5′-monophosphate production and thyroglobulin secretion. J Clin Endocrinol Metab 70: 528–533, 1990

    PubMed  Google Scholar 

  42. Koyama S, Terai T, Inoue T, Inomata K, Tamura K, Kobayashi Y, Kyogoku Y, Kobayashi M: An oxidized analog of human atrial natriuretic polypeptide is a selective agonist for the atrial natriuretic polypeptide clearance receptor which lacks a guanylyl cyclase. Eur J Biochem 203: 425–432, 1992

    PubMed  Google Scholar 

  43. Levin ER, Frank HJL: Natriuretic peptides inhibit rat astroglial proliferation: mediation by C receptor. Am J Physiol 261: R453-R457, 1991

    PubMed  Google Scholar 

  44. Johnson BG, Trachte GJ, Drewett JG: Neuromodulatory effect of the atrial natriuretic factor clearance receptor binding peptide, cANF (4-23)-NH2 in rabbit isolated vasa deferentia. J Pharmacol Exp Ther 257: 720–726, 1991

    PubMed  Google Scholar 

  45. Cahill PA, Hassid A: Clearance receptor binding atrial natriuretic peptides inhibit mitogenesis and proliferation of rat aortic smooth muscle cells. Biochem Biophys Res Commun 179: 1606–1613, 1991

    PubMed  Google Scholar 

  46. Itoh H, Pratt RE, Ohno M, Dzau VJ: Atrial natriuretic polypeptide as a novel antigrowth factor of endothelial cells. Hypertension 19: 758–761, 1992

    PubMed  Google Scholar 

  47. Drewett JG, Ziegler RJ, Trachte GJ: Neuromodulatory effect of atrial natriuretic peptides correlate with an inhibition of adenylate cyclase but not an activation of guanylyl cyclase. J Pharmacol Exp Ther 260: 689–696, 1992

    PubMed  Google Scholar 

  48. Hu R-M, Levin ER, Pedram A, Frank HJL: Atrial natriuretic peptide inhibits the translation and secretion of endothelin from cultured bovine aortic endothelial cells: mediation through C receptors. J Biol Chem 267(24): 17384–17389, 1992

    PubMed  Google Scholar 

  49. Schenk DB, Phelps MN, Porter JG, Fuller F, Cordell B, Lewicki JA: Purification and subunit composition of atrial natriuretic peptide receptor. Proc Natl Acad Sci USA 84: 1521–1525, 1987

    PubMed  Google Scholar 

  50. Porter JG, Arfsten A, Fuller F, Miller, JA, Gregory LC, Lewicki JA: Isolation and functional expression of the human atrial natriuretic peptide clearance receptor. cDNA. Biochem Biophys Res Commun 171: 796–803, 1990

    PubMed  Google Scholar 

  51. Suzuki R, Takahashi A, Hazon N, Takei Y: Isolation of high-molecular-weight C-type natriuretic peptide from the heart of a cartilaginous fish (European dogfishScyliorhinus canicula). FEBS Lett 282: 321–325, 1991

    PubMed  Google Scholar 

  52. Yamaguchi M, Rutledge LJ, Garbers DL: The primary structure of the rat guanylyl cyclase A/atrial natriuretic peptide receptor gene. J Biol Chem 265: 20414–20420, 1990

    PubMed  Google Scholar 

  53. Nunez DJ, Dickson MC, Brown MJ: Natriuretic peptide receptor mRNAs in the rat and human heart. J Clin Invest 90: 1966–1971, 1992

    PubMed  Google Scholar 

  54. Saheki T, Mizuno T, Iwata T, Saito Y, Nagasawa T, Mixuno KU, Ito F, Ito T, Hagiwara H, Hirose S: Structure of the bovine atrial natriuretic peptide receptor (type C) gene. J Biol Chem 266: 11122–11125, 1991

    PubMed  Google Scholar 

  55. Kato J, Lanier-Smith KL, Currie MG: Cyclic GMP down-regulates atrial natriuretic peptide receptors on cultured vascular endothelial cells. J Biol Chem 266: 14681–14685, 1991

    PubMed  Google Scholar 

  56. Trachte GJ, Kanwal S, Elmquist BJ, Ziegler RJ C-type natriuretic peptide neuromodulates independently of guanylyl cyclase activation. Am J Physiol 1995 (in press)

  57. Savoie P, de Champlain J, Anand-Srivastava MB: C-type natriuretic peptide and brain natriuretic peptide inhibit adenylyl cyclase activity: interaction with ANF-R2/ANP-C receptors. FEBS Letters 1995 (In Press)

  58. Nishimoto I, Murayama Y, Katada T, Ui M, Ogata E: Possible direct linkage of insulin-like growth factor-II receptor with guanine nucleotide-binding proteins. J Biol Chem 264: 14029–14038, 1989

    PubMed  Google Scholar 

  59. Church JG, Buick RN: G-protein-mediated, epidermal growth factor signal transduction in a human breast cancer cell line. Evidence for two intracellular pathways distinguishable by pertussis toxin. J Biol Chem 263: 4242–4246, 1988

    PubMed  Google Scholar 

  60. Okamoto T, Katada T, Murayama Y Ui M, Ogata E, Nishimoto I: A simple structure encodes G protein-activating function of the IGF-II/mannose 6-phosphate receptor. Cell 62: 709–717, 1990

    PubMed  Google Scholar 

  61. Schiffrin EL, Carrier F, Thibault G, Deslongchamps M: Solubilization and molecular characterization of the atrial natriuretic peptide (ANP) receptor in human platelets: comparison with ANP receptors in rat tissues. J Clin Endocrinol Metab 72: 484–491, 1991

    PubMed  Google Scholar 

  62. Schiffrin EL, Deslongchamps M, Thibault G: Platelet binding sites for atrial natriuretic factor in humans. Hypertension 8 (Suppl II): II6-II10, 1986

    PubMed  Google Scholar 

  63. Anand-Srivastava MB: Platelet from spontaneously hypertensive rats exhibit decreased expression of inhibitory guanine nucleotide regulatory protein: relation with adenylyl cyclase activity. Circ Res 73: 1032–1039, 1993

    PubMed  Google Scholar 

  64. Khalil F, Fine B, Kuriyama S, Hatori N, Nakamura A, Nakamura M, Aviv A: Increased atrial natriuretic factor receptor density in cultured vascular smooth muscle cells of the spontaneously hypertensive rats. Clin Exp Theory Practice A9: 741–752, 1987

    Google Scholar 

  65. Saavedra JM, Castren E, Gutkind JS, Nazarali AJ: Regulation of brain atrial natriuretic peptide and angiotensin receptors: quantitative autoradiographic studies. Int Rev Neurobiol 31: 257–296, 1989

    PubMed  Google Scholar 

  66. Okazaki M, Kobayashi H, Kuroiwa A, Izumi F: Atrial natriuretic peptide receptors in cerebral microvessels and choroid plexus of spontaneously and hypertensives rats. Brain Res 518: 292–294, 1990

    PubMed  Google Scholar 

  67. Gutkind JS, Kurihara M, Castren E, Saavedra JM: Atrial natriuretic peptide receptors in sympathetic ganglia: Biochemical response and alterations in genetically hypertensive rats. Biochem Biophys Res Commun 149: 65–72, 1987

    PubMed  Google Scholar 

  68. Anand-Srivastava MB: Enhanced expression of inhibitory guanine nudeotide regulatory protein in spontaneously hypertensive rats: Relationship to adenylyl cyclase inhibition. Biochem J 288: 79–85, 1992

    PubMed  Google Scholar 

  69. Anand-Srivastava MB: Spontaneously hypertensive rats (SHR) exhibit altered expression of G-proteins in brain striatum. Pharmacologist 34: 141, 1992

    Google Scholar 

  70. de Champlain J, Mueller RA, Axelrod J: Turnover and synthesis of norepinephrine in experimental hypertension in rats. Circ Res 38: 109–114, 1969

    Google Scholar 

  71. Anand-Srivastava MB, Picard S, Thibault C: Altered expression of inhibitory guanine nucleotide regulatory proteins (Gia) in spontaneously hypertensive rats. Am J Hypertens 4: 840–843, 1991

    PubMed  Google Scholar 

  72. Resink TJ, Scott-Burden T, Jones CR, Baur U, Buhler FR: Atrial natriuretic peptide: binding and cyclic GMP responses in cultures vascular smooth muscle cells from spontaneously hypertensive rats., Am J Hypertens 2: 32–39, 1989

    PubMed  Google Scholar 

  73. Nakamura M, Nakamura A, Fine B, Aviv A: Blunted cGMP response to ANF in vascular smooth muscle cells of SHR. Am J Physiol 255: C573-C580, 1988

    PubMed  Google Scholar 

  74. Sauro MD, Fitzpatrick DF, Coffey RG: Defective cyclic GMP accumulation in spontaneously hypertensive rat aorta in response to atrial natriuretic factor. Biochem Pharmacol 37: 2109–2112, 1988

    PubMed  Google Scholar 

  75. Cachofeiro V, Schiffrin EL, Thibault G, Cantin M, Garcia R: Effect of a chronic infusion of atrial natriuretic factor on glomerular and vascular receptors in spontaneously hypertensive rats. J Hypertens 7: 335–342, 1989

    PubMed  Google Scholar 

  76. Schiffrin EL: Vascular receptors for angiotensin, vasopressin, and atrial natriuretic peptide in experimental hypertension. Can J Physiol Pharmacol 67: 1118–1123, 1989

    PubMed  Google Scholar 

  77. Anand-Srivastava MB, de Champlain J, Thibault C: DOCA-salt hypertensive rat hearts exhibit altered expression of G-proteins. Am J Hypertens 6: 72–75, 1993

    PubMed  Google Scholar 

  78. Garcia R, Gauquelin G, Thibault G, Cantin M, Schiffrin EL: Glomerular atrial natriuretic factor in spontaneously hypertensive rats. Hypertension 13: 567–574, 1989

    PubMed  Google Scholar 

  79. Saito H, Inui K, Matsukawa Y, Okano T, Maegawa H, Nakao K, Morii N, Imura H, Makino S, Hori R: Specific binding of atrial natriuretic polypeptide to renal basolateral membranes in spontaneously hypertensive rats (SHR) and stroke-prone SHR. Biochem Biophys Res Commun 137: 1079–1085, 1986

    PubMed  Google Scholar 

  80. Ogura T, Mitsui T, Yamamoto I, Katayama E, Ota Z, Ogawa N: Differential changes in atrial natriuretic peptide and vasopressin receptor binding in kidney of spontaneously hypertensive rats. Life Sci 40: 233–238, 1987

    PubMed  Google Scholar 

  81. Gauquelin G, Schiffrin EL, Cantin M, Garcia R: Specific binding of atrial natriuretic factor to renal glomeruli in DOCA and DOCA-salt treated rats: correlation with atrial and plasma concentrations. Biochem Biophys Res Commun 145: 522–531, 1987

    PubMed  Google Scholar 

  82. Nuglozeh E, Gauquelin G, Garcia R, Tremblay J, Schiffrin EL: Atrial natriuretic peptide receptors in renal papilla of DOCA-salt hypertensive rats. Am J Physiol 259: F130-F137, 1990

    PubMed  Google Scholar 

  83. Gauquelin G, Garcia R, Schiffrin EL, Carrier F, Thibault G, Cantin M, Gutkowska J: Renal glomerular ANF receptor in renovascular hypertension in the rat. Arch Mal Coeur 80: 966–969, 1987

    PubMed  Google Scholar 

  84. Garcia R, Gauquelin G, Cantin M, Schiffrin EL: Renal glomerular atrial natriuretic factor receptors in one kidney, one clip rats. Hypertension 11: 185–190, 1988

    PubMed  Google Scholar 

  85. Shionoiri H, Hirawa N, Takasaki I, Ishikawa Y, Oda H, Minamisawa K-S, Sugimoto K-I, Matsukawa T, Ueda S-I, Miyajima E, Umemura S, Grotoh E, Ishii M, Ishido M, Shimonaka M, Hirose S: Functional atrial natriuretic peptide receptor in human adrenal tumor. J Cardiovasc Pharmacol 13: S9-S12, 1989

    PubMed  Google Scholar 

  86. McCarty R, Plunkett LM: Forebrain binding sites for atrial natriuretic factor: alterations in spontaneously hypertensive (SHR) rats. Neurochem Int 9: 177–183, 1986

    Google Scholar 

  87. Brown J, Czamecki A: Receptor subtypes for atrial natriuretic peptides in the brains of hypertensive rats. Am J Physiol 260: R441-R447, 1991

    PubMed  Google Scholar 

  88. McCarty R, Plunkett LM: Binding sites for atrial natriuretic factor in brain: alterations in Brattleboro rats. Brain Res Bull 17: 767–772, 1986

    PubMed  Google Scholar 

  89. Stewart RE, Switters SE, McCarty R: Alterations in binding sites for atrial natriuretic factor (ANF) in kidneys and adrenal glands of Dahl hypertensive-sensitive (S/JR) rats. J Hypertens 5: 481–487, 1987

    PubMed  Google Scholar 

  90. Duggan J, Kilfeather S, Lightman SL, O'Brien E, O'Malley K: Masma atrial natriuretic peptide concentration and platelet atrial natriuretic peptide binding site density in ageing and hypertension. Clin Sci 81: 509–514, 1991

    PubMed  Google Scholar 

  91. Anand-Srivastava MB: Differential regulation of ANF-R2 receptors coupled to adenylyl cyclase in cardiovascular tissues in hypertension. Am J Hypertens 6: 538–541, 1993

    PubMed  Google Scholar 

  92. Khurihara M, Castren E, Gutkind JS, Saavedra JM: Lower number of atrial natriuretic peptide receptors in thymocytes and spleen cells of spontaneously hypertensive rats. Biochem Biophys Res Commun 149: 1132–1140, 1987

    PubMed  Google Scholar 

  93. Tremblay J, Huot C, Willenbrock RC, Bayard F, Gossard F, Fujio N, Koch C, Kuchel O, Debinski W, Hamet P: Increased cyclic guanosine monophosphate production and overexpression of atrial natriuretic peptide A-receptor mRNA in spontaneously hypertensive rats. J Clin Invest 92: 2499–2508, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcil, J., Anand-Srivastava, M.B. Defective ANF-R2/ANP-C receptor-mediated signalling in hypertension. Mol Cell Biochem 149, 223–231 (1995). https://doi.org/10.1007/BF01076581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076581

Key words

Navigation