Skip to main content
Log in

Protein tyrosine phosphorylation in cardiovascular system

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Protein tyrosine phosphorylation is believed to play a central role in signaling pathways initiated by growth factor receptor activation. Recent studies have shown that various vasoactive peptides, in addition to eliciting a contractile response, also serve as growth factors for vascular smooth muscle and stimulate tyrosyl phosphorylation of several endogenous proteins. Some of these proteins have been identified and are similar to those stimulated by growth factor receptor activation. Furthermore, evidence is also accumulating to support an involvement of protein tyrosine phosphorylation, in acute action of groth factors and vasoactive peptides on smooth muscle contractility. This review will briefly summarize the recent work on vasoactive peptide-mediated protein tyrosine phosphorylation in cardiovascular tissues and its potential functional significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AII:

angiotensin II

AVP:

arginine vasopressin

DAG:

diacyl glycerol

EGF:

epidermal growth factor

EIF-4:

eukaryotic protein synthesis initiation factor-4

ERK:

extracellar signal regulated kinase

ET-1:

endothelin-1

FAK:

focal adhesion kinase

G-proteins:

guanyl nucleotide binding proteins

GRB-2:

growth factor receptor bound protein-2

IGF-1:

insulin-like growth factor-1

IP3 :

inositol 1,4,5 trisphosphate

IRS-1:

insulin receptor substrate-1

MAPK:

mitogenactivated protein kinase ERK, extracellular signal regulated kinase

MAPKK:

mitogen activated protein kinase kinase; also known as MEK, MAPK or, ERK kinase

PDGF:

platelet derived growth factor

PHAS-I:

phosphorylated heat and acid stable protein regulated by insulin

PKC:

protein kinase C

PLC:

phospholipase C

PMA:

phorobol-12-myristate acetate

PTK:

protein tyrosine kinase

PTPase:

protein tyrosine phosphatese

rsk:

ribosomal S6 kinases

shc:

src homology domain containing protein

SHR:

spontaneously hypertensive rat

SOS:

son of sevenless

WKY:

wistar kyoto

References

  1. Owens GK, Schwartz SM: Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat: Role of cellular hypertrophy, hyperploidy, and hyperplasia. Circ Res 51: 280–289, 1982

    PubMed  Google Scholar 

  2. Owens GK, Reidy MA: Hyperplastic growth response of vascular smooth muscle cells following induction of acute hypertension in rats by aortic coarctation. Circ Res 57: 695–705, 1985

    PubMed  Google Scholar 

  3. Lichtenstein AH, Brecher P, Chobanian AV: Effects of deoxycorti-costerone-salt hypertension on cell ploidy in the rat aorta. Hypertension 8 (Suppl. II): 50–54, 1986

    PubMed  Google Scholar 

  4. Mulvany MJ, Baandrup U, Gundersen HJG: Evidence for hyperplasia in mesenteric resistance vessels of spontaneously hypertensive rats using a three-dimensional disector. Circ Res 57: 794–800, 1985

    PubMed  Google Scholar 

  5. Lee RMKW, Forrest JB, Garfield RE, Daniel EE: Ultrastructural changes in mesenteric arteries from spontaneously hypertensive rats-blood vessels. 20: 72–91, 1983

  6. Yamori Y, Igawa T, Kanbe T, Kihara, M, Nara Y, Morie R: Mechanisms of structural vascular changes in genetic hypertension: analysis on cultured vascular smooth muscle cells from spontaneously hypertensive rats. Clin Sci 61: 121S-123S, 1981

    PubMed  Google Scholar 

  7. Clegg K, Eggena P, Barrett JP, Bleibaum JL, Sambhi MP: Smooth muscle cell ratein vitro and hyperplasia in the aorta of the spontaneously hypertensive rat. J Hypertension 4 (Suppl 3): S101-S103, 1986

    Google Scholar 

  8. Hamet P, Hadrava V, Kruppa U, Tremblay J: Vascular smooth muscle cell hyperresponsiveness to growth factors in hypertension. J Hypertension 6 (Suppl 4): S36-S39, 1988

    Google Scholar 

  9. Hadrava V, Tremblay J, Hamet P: Abnormalities in growth characteristics of aortic smooth muscle cells in spontaneously hypertensive rats. Hypertension 13: 589–597, 1989

    PubMed  Google Scholar 

  10. Scott-Burden T, Resink TJ, Baur U, Burgin M, Buhler FR: Epidermal growth factor responsiveness in smooth muscle cells from hypertensive and normotensive rats. Hypertension 13: 295–304, 1989

    PubMed  Google Scholar 

  11. Gospodurowicz D, Hirabayashi K, Giguère L, Tabuer JP: Factors controlling the proliferative rate, final cell density, and life span of bovine vascular smooth muscle cell in culture. J Cell Biol 89: 568–578, 1981

    PubMed  Google Scholar 

  12. Ross R, Raines EW, Bowen-Pope DF: The biology of platelet derived growth factor. Cell 46: 155–169, 1986

    PubMed  Google Scholar 

  13. Bhargava G, Rifas L, Makman MH: Presence of epidermal growth factor receptors and influence of epidermal growth factor on proliferation and aging in cultured smooth muscle cells. J Cell Physiol 100: 365–374, 1979

    PubMed  Google Scholar 

  14. Clemmons DR: Interaction of circulating cell-derived and plasma growth factors in stimulating cultured smooth muscle cell replication. J Cell Physiol 121: 425–430, 1984

    PubMed  Google Scholar 

  15. Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212, 1990

    PubMed  Google Scholar 

  16. Schlessinger J, Ullrich A: Growth factor signaling by receptor tyrosine kinases. Neuron 9: 393–395, 1992

    PubMed  Google Scholar 

  17. Hunter Tet al: Protein tyrosine kinases. Ann Rev Cell Biol 10: In Press, 1994

  18. Stouffer GA, Owens GK: Angiotensin II-induced mitogenesis of spontaneously hypertensive rat — derived cultured smooth muscle cells is dependent on autocrine production of transforming growth factor-b. Circ Res 70: 820–828, 1992

    PubMed  Google Scholar 

  19. Geisterfer AAT, Owens GK: Arginin vasopressin induced hypertrophy of cultured rat aortic smoothmusclecells. Hypertension 14: 413–420, 1989

    PubMed  Google Scholar 

  20. Takuwa N, Takuwa Y, Yanagisawa M, Yamashita K, Masaki T: A novel vasoactive peptide endothelin stimulates mitogenesis through inositol lipid turnover in swiss 3T3 fibroblasts. J Biol Chem 264: 7856–7861, 1989

    PubMed  Google Scholar 

  21. Nabika T, Velletri PA Lovenberg W, Beaven MA: Increase cytosolic calcium and phosphoinositide metabolism induced by angiotensin II and [Arg] vasopressin in vascular, smooth muscle cells. J Biol Chem 260: 4661–4670, 1985

    PubMed  Google Scholar 

  22. Araki S, Kawahara Y, Kariya K et al.: Stimulation of phospholipasae C mediated hydrolysis of phosphoinositide by endotehlin in cultured rabbit aortic smooth muscle cells. Biochem Biophys Res Commun 159: 1072–1079, 1989

    PubMed  Google Scholar 

  23. Griendling KK, Tsuda T, Alexander RW: Endothelin stimulates diacylglycerol accumulation and activates protein kinase C in cultured vascular smooth muscle cells. J Biol Chem 264: 8237–8240, 1989

    PubMed  Google Scholar 

  24. Nishizuka Y: Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–613, 1992

    PubMed  Google Scholar 

  25. Granot Y, van Putten V, Schrier RW: Vasopressin, dependent tyrosine phosphorylation of a 38 kDa protein in human platelets. Biochem Biophys Res Commun 168: 566–573, 1990

    PubMed  Google Scholar 

  26. Huckle WR, Prokop CA, Dy RC, Herman B, Earp S: Angiotensin II stimulates protein-tyrosine phosphorylation in a calcium-dependent manner. Mol Cell Biol 10: 6290–6298, 1990

    PubMed  Google Scholar 

  27. Tsuda T, Kawahara Y, Shii K, Koide M, Ishida Y, Yokoyama M: Vasoconstrictor induced protein-tyrosine phosphorylation in cultured vascular smooth muscle cells. FEBS Lett 285: 44–48, 1991

    PubMed  Google Scholar 

  28. Force T, Kyriakis JM, Avruch J, Bonventre, JV: Endothelin, vasopressin and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and-independent pathways in glomerular messengial cells. J Biol Chem 266: 6650–6656, 1991

    PubMed  Google Scholar 

  29. Zachary I, Sinnett-Smith J, Rozengurt E: Stimulation of tyrosine kinase activity in antiphosphotyrosine immune complexes of swiss 3T3 cell lysates occurs rapidly after addition of bombesin, vasopressin and endotehlic to intact cells. J Biol Chem 266: 24126–24133, 1991

    PubMed  Google Scholar 

  30. Duff JL, Berk BC, Corson MA: Angiotensin II stimulates the pp44 and pp42 mitogen-activated protein kinases in cultured rat aortic smooth muscle cells. Biochem Biophys Res Commun 188: 257–264, 1992

    PubMed  Google Scholar 

  31. Tsuda T, Kawahara Y, Ishida Y, Koide M, Shii K, Yokoyama M: Angiotensin II stimulates two myelin basic protein/microtubule—Associated protein 2 kinases in cultured vascular smooth muscle cells. Circ Res 71: 620–630, 1992

    PubMed  Google Scholar 

  32. Koide M, Kawahara Y, Tsuda T, Ishida Y, Shii K, Yokoyama M: Stimulation of protein tyrosine phosphorylation by endotehlin-1 in cultured vascular smooth muscle cells. Atherosclerosis 92: 1–7, 1992

    PubMed  Google Scholar 

  33. Koide M, Kawahara Y, Tsuda T, Ishida Y, Shii K Yokoyama M: Endotehlin-1 stimulates tyrosine phosphorylation and the activities of two mitogen activated protein kinases in cultured vascular smooth muscle cells. J Hypertens 10: 1173–1182, 1992

    PubMed  Google Scholar 

  34. Molloy CJ, Taylor DS, Weber H: Angiotensin II stimulation of protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth mucle cells. J Biol Chem 268: 7338–7345, 1993

    PubMed  Google Scholar 

  35. Butcher RD, Schollmann C, Marme D: Angiotensin II mediates intracellular signalling in vascular smooth muscle cells by activation of tyrosine-specific protein kinases and c-raf-1. Biochem Biophys Res Commun 196: 1280–1287, 1993

    PubMed  Google Scholar 

  36. Marrero MB, Paxton WG, Duff JL, Berk BC, Bernstein KE: Angiotensin II stimulates tyrosine phosphorylation of phospholipase C-gamma 1 in vascular smooth muscle cells. J Biol Chem 269: 10935–10939, 1994

    PubMed  Google Scholar 

  37. Schorb W, Peeler T-C, Madigan NN, Conrad KM, Baker KM: Angiotensin II-induced protein tyrosine phosphorylation in neonatal cardiac fibroblasts. J Biol Chem. 269: 19626–19632, 1994

    PubMed  Google Scholar 

  38. Weber H, Webb ML, Serafino R, Taylor DS, Moreland S, Norman J, Molly C-J: Endothelin-1, and angiotensin-II stimulate delayed mitogenesis in cultured rat aortic smooth muscle cells: evidence for common signaling mechanisms. Mol Endocrinol 8: 148–158, 1994

    PubMed  Google Scholar 

  39. Berk BC, Brock TA, Webb RC, Taubman MB, Atkinson WJ, Gimbrone MA Jr, Alexander RW Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. J Clin Invest 75: 1083–1086, 1985

    PubMed  Google Scholar 

  40. Berk BC, Alexander RW, Brock TA, Gimbrone MA Jr, Webb RC: Vasoconstriction: a new activity for platelet derived growth factor. Science 232: 87–90, 1986

    PubMed  Google Scholar 

  41. Muramatsu I, Hollenberg M-D, Lederis K: Vascular actions of epidermal growth factor prostaglandin production. Can J Physiol Pharmacol 63: 995–999, 1985

    Google Scholar 

  42. Muramatsu I, Itoh H, Ledris K, Hollenberg MD: Distinct actions of epidermal growth factor urogastrone in isolated smooth muscle preparation from guinea pig stsomach: differential inhibitoin by indomethacin. J Phannacol Exp Ther 245: 625–631, 1988

    Google Scholar 

  43. Hollenberg MD, Muramatsu I, Itoh H, Patel P, Yang S-G, Ledris K: Contractile actions of epidermal growth factor-urogastrone in isolated smooth muscle preparations from guinea pig stomach: structure-activity relationship and comparison with the effects of transforming growth factor a. J Pharmacol Exp Ther 248: 384–394, 1989

    PubMed  Google Scholar 

  44. Saifeddine M, Laniyonu A, Yang, S-G, Hollenberg MD: Tyrosine kinase inhibitors and the contractile actions of angiotensin II in vascular tissue. Pharmacol Commun. 1: 177–184, 1992

    Google Scholar 

  45. Yang SG, Saifeddine M, Hollenberg MD: Tyrosine kinase inhibitors and the contractile actions of epidermal growth factor-urogastrone and other agonists in gastric smooth muscle. Can J Physiol Pharmacol 70: 85–93, 1992

    PubMed  Google Scholar 

  46. Sauro MD, Thomas B: Tyrphostin attenuates platelet-derived growth factor-induced contraction in smooth muscle through inhibition of protein tyrosine kinase(s). J Pharmacol Expt Therapeut 267: 1119–11254, 1993

    Google Scholar 

  47. Hollenberg MD: The acute actions of growth factors in smooth muscle systems. Life Sciences 54: 223–235, 1993

    Google Scholar 

  48. Hollenberg MD: Tyrosine kinase pathways and the regulation of smooth muscle contractillity Trends in Pharmacol Sci 15: 108–114, 1994

    Google Scholar 

  49. Seger R, Ahn NG, Boulton TG, Yancopoulos GD, Panayotatos N, Radziejewska E, Ericsson L, Bratlier RL, Cobb MH, Krebs EG: Microtubule-associated protein 2 kinases, ERK1 and ERK2 undergo autophosphorylation on both tyrosine and threonine residues: implication for their mechanism of activation. Proc Natl Acad Sci USA 88: 7551–7555, 1991

    Google Scholar 

  50. Pelech SL, Sanghera JS: Mitogen activated protein kinases, versatile transducers in cell signaling. Trends Biochem Sci 17: 233–238, 1992

    PubMed  Google Scholar 

  51. Blenis J: Signal transduction via the MAP kinases: Proceed at your own RSK. Proc Natl Acad Sci USA 90: 5884–5892, 1993

    Google Scholar 

  52. Pelech SL, Charest DL, Mordret GP, Siow YL, Palaty C, Campbell D, Charlton L, Samiei M, and Sanghera JS: Networking with mitogen activated protein kinases. Mol Cell Biochem 127–128: 157–169, 1993

    Google Scholar 

  53. Nishida E, Gotoh Y: The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18: 128–131, 1993

    PubMed  Google Scholar 

  54. Yoshimasa T, Nakao K, Suga S, Kishimoto I, Imura H: Identification of endothelin-1 induced activation of multiple extracellular signal regulated kinases in aortic smooth muscle cells. FEBS Lett 311: 195–198, 1992

    PubMed  Google Scholar 

  55. Kribben A, Wieder ED, Li X, van Putten V, Granot Y, Schrier RW, Nemenoff, RA: AVP-induced activation of MAP kinases in vascular smooth muscles cells is mediated through protein kinase C Am J Physiol 265: C939-C945, 1993

    PubMed  Google Scholar 

  56. Granot Y, Erikson E, Fridman H, VanPutten V, Williams B, Schrier RW, Maller JL: Direct evidence for tyrosine and threonine phosphorylation and activation of mitogen-activated protein kinase by vasoprossin in cultured rat vascular smooth muscle cells. J Biol Chem 268: 9564–9569, 1993

    PubMed  Google Scholar 

  57. Pellice G, Lanfrancone L, Grignani F et al.: A novel transforming protein (SHC) with an SH2 domain is implicated in mitogen signal transduction. Cell 70: 93–104, 1992

    PubMed  Google Scholar 

  58. Skolnik EY, Lee CH, Batzer A et al.: The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and SHC: implications for insulin control of rats signaling. EMBO J 12: 1929–1936, 1993

    PubMed  Google Scholar 

  59. Egan SE, Giddings BW, Brooks MW et al.: Association of SOS ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363: 45–51, 1993

    PubMed  Google Scholar 

  60. Baltensperger K, Kozma LM, Cherniack AD, et al.: Binding of the ras activator son of sevenless to insulin receptor substrate-1 signaling complexes. Science 260: 1950–1952, 1993

    PubMed  Google Scholar 

  61. White MF, Kahn CR: The insulin signaling system. J Biol Chem 264: 1–4, 1994

    Google Scholar 

  62. Schaller MD, Parsons JT: Focal adhesion kinase: an integrin linked protein tyrosine kinase. Trends Cell Biol 3: 258–261, 1993

    PubMed  Google Scholar 

  63. Schaller MD, Hildebrand JD, Shannon JW, Fox FR, Vines RR, Parsons JT: Autophosphorylation of focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 14: 1680–1688, 1994

    PubMed  Google Scholar 

  64. Rhee SG, Choi KD: Regulation of inositol phospholipid specific-phospholipase C isozymes. J Biol Chem 267: 12393–12396, 1992

    PubMed  Google Scholar 

  65. Paxton WG, Marrero MB, Klein JD, Delafontaine P, Berk BC, Bernstein KE: The angiotensin II AT1 receptor is tyrosine and serine phosphorylated and can serve as a substrate for the SRC family of tyrosine kinases. Biochem Biophys Res Commun 200: 260–267, 1994

    PubMed  Google Scholar 

  66. Scott-Burden T, Resink TJ, Baur U et al.: Amiloride sensitive activation of S6kinase by angiotensin II incultured vascular smooth muscle cells. Biochem Biophys Res Commun 1512,: 583–589, 1988

    Google Scholar 

  67. Berk BC, Vekshtein V, Gordon HM, Tsuda T: Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 13: 305–314, 1989

    PubMed  Google Scholar 

  68. Lin T-A, Kong X, Haystead TAJ, Pause A, Pause A, Belsham G, Sonenberg M, Lawrence JC Jr: PHAS-1 as a link between mitogen activated protein kinase and translation initiation. Science 266: 653–656, 1994

    PubMed  Google Scholar 

  69. Yoshimasa T, Nakao K, Suga S-I, Kishimoto I, Kiso Y, Imuru H: Identification of endothelin induced activation of multiple extracellular signal-regulated kinases in aortic smooth muscle cells. FEBS Lett 311: 195–198, 1992

    PubMed  Google Scholar 

  70. Swarup G, Dasgupta JD, Garbers DL: Tyrosine kinase activity of spleen and other tissues. J Biol Chem 258: 10341–10347, 1983

    PubMed  Google Scholar 

  71. Srivastava AK: Non-receptor protein tyrosine kinases of normal tissues. Int J Biochem 22: 1229–1234, 1990

    PubMed  Google Scholar 

  72. DiSalvo J, Gifford D, Kokkinakis A: ATP and polyphosphate-mediated stimulation of pp60c-src kinase activity in extracts from vascular smooth muscle. J Biol Chem 264: 10773–10778, 1989

    PubMed  Google Scholar 

  73. Srivastava AK: Presence of protein tyrosine kinase activity in cultured vascular smooth muscle cells from rat aorta. Am J Hypertens 5: 44A, 1992

    Google Scholar 

  74. Srivastava AK: Protein tyrosine kinase activity in cultured vascular smooth muscle cells (VSMC) from rat aorta. Int J Biochem 26: 547–550, 1994

    PubMed  Google Scholar 

  75. Zhao Y, Sudol M, Hanafusa H, Krueger J: Increased tyrosine kinase activity of c-src during calcium-induced keratinocyte differentiation. Proc Natl Acad Sci USA 89: 8298–8302, 1992

    PubMed  Google Scholar 

  76. Cooper JA, Gould KL, Cartright CA, Hunter T: Tyr527 is phosphorylated in pp60c-src: implications for regulation. Science 231: 1431–1434, 1986

    PubMed  Google Scholar 

  77. Bottari SP, King IN, Reichlin S, Dahlstroem I, Lydon N, de Gasparo M: The angiotensin AT-2 receptor stimulates tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 183: 206–211, 1992

    PubMed  Google Scholar 

  78. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ: Expression cloning of type 2 angiotensin II receptor reveals a unquie class of seven-transmembrane receptors. J Biol Chem 268: 24539–24542, 1993

    PubMed  Google Scholar 

  79. Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T: Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268: 24553–24546, 1993

    Google Scholar 

  80. Duff JL, Marrero MB, Paxton WD, Charles CH, Lau LF, Bernstein KE, Berk BB: Angiotensin II induces 3 CH 134, a protein-tyrosine phosphatase in vascular smooth muscle cells. J Biol Chem 268: 26037–26040, 1993

    PubMed  Google Scholar 

  81. Yang S-G, Saifeddine M, Laniyounce A, Hollenberg MD: Distinct signal transduction pathways for angiotensin-II in Guinea pig gastric smooth muscle: differential blockade by indomethacin and tyrosine kinase inhibitors. J Pharmacol Exptl Therap. 264: 958–966, 1993

    Google Scholar 

  82. DiSalvo J, Stensloff A, Semenchuk L, Satoh S, Kolquist K, Pfitzer G: Tyrosine kinase inhibitors suppress agonist induced contraction in smooth muscle. Biochem Biophys Res Commun 190: 968–974, 1993

    PubMed  Google Scholar 

  83. Swarup G, Cohen S, Garbers DL: Inhibition of membrane phosphotyrosyl phosphatase activity by vanadate. Biochem Biophys Res Commun 107: 1104–1109, 1982

    PubMed  Google Scholar 

  84. DiSalvo J, Semenchuk L, Lauer J: Vanadate-induced contraction of smooth muscle and enhanced protein tyrosine phosphorylation. Arch Biochem Biophys 304: 386–391, 1993

    PubMed  Google Scholar 

  85. St-Louis J, Sicotte B, Breton E, Srivastava AK: Contractile effects of vanadate on aorta rings from virgin and pregnant rats. Can J Physiol Pharmacol 72 (Suppl 3): 17, 1994

    Google Scholar 

  86. Candura SM, Manzo L, Marraccini P, Coccini T, Tonini M: Investigation into vanadate-induced potentiation of smooth muscle contractility in the rabbit isolated ileum. Life, Sciences 54: 237–244, 1993

    Google Scholar 

  87. Laniyonu A, Saifeddine M, Ahmad S, Hollenberg MD: Regulation of vascular and gastric smooth muscle contractility by pervanadate. Brit J Pharmacol 113: 403–410, 1993

    Google Scholar 

  88. Lee K-M, Toscas K, Villereal ML: Inhibition of bradykinin-and thaposigargin-induced Ca2+entry by tyrosine kinase inhibitors. J Biol Chem 268: 9945–9948, 1993

    PubMed  Google Scholar 

  89. childs TJ, Mak AS: Smooth muscle mitogen activated protein (MAP kinase): purification and characterization, and the phosphorylation of caldersman. Biochem J 296: 745–751, 1993

    PubMed  Google Scholar 

  90. Adam L-P, Hathaway DR: Identification of mitogen activated protein kinases phosphorylation sequence in mammalian h-caldesmon. FEBS Lett 322: 56–60, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, A.K. Protein tyrosine phosphorylation in cardiovascular system. Mol Cell Biochem 149, 87–94 (1995). https://doi.org/10.1007/BF01076567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076567

Key words

Navigation