Skip to main content
Log in

Significance of cytoplasmic fatty acid-binding protein for the ischemic heart

  • Cellular Fatty Acid-Binding Proteins II
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ischemia of the heart is accompanied by the tissue accumulation of long-chain fatty acids and their metabolic derivatives such as β-hydroxy fatty acids and fatty acyl-CoA and acyl-L-carnitine esters. These substances might be detrimental for proper myocardial function. Previously, it has been suggested that intracellular lipid binding proteins like cytoplasmic fatty acid-binding protein (FABP) and acyl-CoA binding protein (ACBP) may bind these accumulating fatty acyl moieties to prevent their elevated levels from potentially harmful actions. In addition, the suggestion has been made that the abundantly present FABP may scavenge free radicals which are generated during reperfusion of the ischemic heart. However, these protective actions are challenged by the continuous physico-chemical partition of fatty acyl moieties between FABP and membrane structures and by the rapid release of FABP from ischemic and reperfused cardiac muscle. Careful evaluation of the available literature data reveals that at present no definite conclusion can be drawn about the potential protective effect of FABP on the ischemic and reperfused heart. Biochem123: 167–173, 1993)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FABP:

Fatty Acid-Binding Protein

ACBP:

Acyl-CoA Binding Protein

MDGI:

Mammary-Derived Growth Inhibitor

CK:

Creatine Kinase

LDH:

Lactate Dehydrogenase

References

  1. Bass NM: The cellular fatty acid-binding proteins: Aspects of structure, regulation, and function. Int Rev Cytol 111: 143–184, 1988

    PubMed  Google Scholar 

  2. Glatz JFC, Van der Vusse GJ: Cellular fatty acid-binding proteins: Current concepts and future directions. Mol Cell Biochem 98: 237–251, 1990

    PubMed  Google Scholar 

  3. Veerkamp JH, Peeters RA, Maatman RGHJ: Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim Biophys Acta 1081: 1–24, 1991

    PubMed  Google Scholar 

  4. Tipping E, Ketterer B: The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes. Biochem J 195: 441–452, 1980

    Google Scholar 

  5. Vork MM, Glatz JFC, Van der Vusse GJ: On the mechanism of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid-binding protein. J Theor Biol 160: 207–222, 1993

    PubMed  Google Scholar 

  6. Cistola DP, Sacchettini JC, Banaszak LJ, Walsh MT, Gordon JI: Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed inEscherichia coli. A comparative13C NMR study. J Biol Chem 264: 2700–2710, 1989

    PubMed  Google Scholar 

  7. Glatz JFC,Vork MM, Cistola DP, Van der Vusse GJ: Cytoplasmic fatty acid-binding protein: Significance for intracellular transport of fatty acids and putative role in signal transduction pathways. Prostagland Leuk Essent Fatty Acids 48: 33–41, 1993

    Google Scholar 

  8. Brecher P: The interaction of long-chain acyl-CoA with membranes. Mol Cell Biochem 57: 3–15, 1983

    PubMed  Google Scholar 

  9. Glatz JFC, Paulussen RJA, Veerkamp JH: Fatty acid-binding proteins from heart. Chem Phys Lipids 38: 115–129, 1985

    PubMed  Google Scholar 

  10. Van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS: Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 72: 881–940, 1992

    PubMed  Google Scholar 

  11. Lopaschuk GD, Spafford MA, Davies NJ, Wall SR: Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 66: 546–553, 1990

    PubMed  Google Scholar 

  12. Van Bilsen M, Van der Vusse GJ, Wilemsen PHM, Coumans WA, Roemen THM, Reneman RS: Lipid alterations in isolated, working rat heart during ischemia and reperfusion: Its relation to myocardial damage. Circ Res 64: 304–314, 1989

    PubMed  Google Scholar 

  13. De Groot MJM, Coumans WA, Willemsen PHM, Van der Vusse GJ: Substrate-induced changes in the lipid content of ischemic and reperfused myocardium. Its relation to hemodynamic recovery. Circ Res 72: 176–186, 1993

    PubMed  Google Scholar 

  14. Van der Vusse GJ, Roemen THM, Prinzen FW, Coumans WA, Reneman RS: Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 50: 538–546, 1982

    PubMed  Google Scholar 

  15. Burton KP, Buja LM, Sen A, Willerson JT, Chien KR: Accumulation of arachidonate in triacylglycerols and unesterified fatty acids during ischemia and reflow in the isolated rat heart. Correlation with the loss of contractile function and the development of calcium overload. Am J Pathol 124: 238–245, 1986

    PubMed  Google Scholar 

  16. Katz AM, Messineo FC: Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48: 1–16, 1981

    PubMed  Google Scholar 

  17. Piper HM, Sezer O, Schwartz P, Hütter JF, Spieckermann PG: Fatty acid-membrae interactions in isolated cardiac mitochondria and erythrocytes. Biochim Biophys Acta 732: 193–203, 1983

    PubMed  Google Scholar 

  18. Hülsmann WC, Schneijdenberg CTWM, Verkleij AJ: Accumulation and excretion of long-chain acylcarnitine by rat hearts: Studies with aminocarnitine. Biochim Biophys Acta 1097: 263–269, 1991

    PubMed  Google Scholar 

  19. Lopaschuk GD, Wall SR, Olley PM, Davies NJ: Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res 63: 1036–1043, 1988

    PubMed  Google Scholar 

  20. Glatz JFC, Van Bilsen M, Paulussen RJA, Veerkamp JH, Van der Vusse GJ, Reneman RS: Release of fatty acid-binding protein from isolated rat heart subjected to ischemia and reperfusion or to the calcium paradox. Biochim Biophys Acta 961: 148–152, 1988

    PubMed  Google Scholar 

  21. Vork MM, Glatz JFC, Van der Vusse GJ: Release of fatty acid-binding protein and long chain fatty acids from isolated rat heart after ischemia and subsequent calcium paradox. Mol Cell Biochem123: 175–184, 1993

    PubMed  Google Scholar 

  22. Srimani BN, Engelman RM, Jones R, Das DK: Protective role of intracoronary fatty acid-binding protein in ischemic and reperfused myocardium. Circ Res 66: 1535–1543, 1990

    PubMed  Google Scholar 

  23. Glatz JFC, Van der Vusse GJ, Reneman RS: Protective role of fatty acid-binding protein in ischemic and reperfused heart (letter). Circ Res 68: 1490, 1991

    PubMed  Google Scholar 

  24. Wallukat G, Boehmer FD, Engstroem U, Langen P, Hollenberg M, Behlke J, Kuehn H, Grosse R: Modulation of the beta-adrenergic-response in cultured rat heart cells. II. Mammary-derived growth inhibitor (MDGI) blocks induction of beta-adrenergic supersensitivity. Dissociation from lipid-binding activity of MDGI. Mol Cell Biochem 102: 49–60, 1991

    PubMed  Google Scholar 

  25. Boehmer FD, Mieth M, Reichmann G, Taube C, Grosse R, Hollenberg MD: A polypeptide growth inhibitor isolated from lactating bovine mammary gland (MDGI) is a lipid-carrying protein. J Cell Biochem 38: 199–204, 1989

    Google Scholar 

  26. Samanta A, Das DK, Jones R, George A, Prasad MR: Free radical scavenging by myocardial fatty acid-binding protein. Free Rad Res Comm 2: 73–82, 1989

    Google Scholar 

  27. Ferrari R, Curello S, Cargnoni A, Condorelli E, Comini L, Ghielmi S, Ceconi C: Importance of free radicals generated by endothelial and myocardial cells in ischemia and reperfusion. In: HM Piper (ed.) Pathophysiology of Severe Ischemic Myocardial Injury. Kluwer Academic Publishers, Dordrecht, Boston, London, 1990, pp 221–238

    Google Scholar 

  28. Takahashi H, Kawaguchi H, Iizuka K, Yasuda H: The leakage of fatty acid-binding protein from cultured myocardial cells during hypoxia. Cardiovasc Drugs Ther 5: 1021–1026, 1991

    PubMed  Google Scholar 

  29. Vork MM, Glatz JFC, Surtel DAM, Van der Vusse GJ: Protein release from isolated rat heart normoxia, low-flow ischemia and reperfusion. Submitted

  30. Glatz JFC, Kleine AH, Van Nieuwenhoven FA, Van Dieijen-Visser MP, Hermens WT, Van der Vusse GJ: Fatty acid-binding protein and myoglobin as plasma markers for the early assessment of acute myocardial infarction in man. Tijdschr Ned Ver Klin Chem 18: 21–27, 1993

    Google Scholar 

  31. Van der Laarse A, Hollaar L, Van der Valk LJM: Release of alpha hydroxybutyrate dehydrogenase from neonatal rat heart cell cultures exposed to anoxia and reoxygenation: Comparison with impairment of structure and function of damaged cardiac cells. Cardiovas Res 13: 345–353, 1979

    Google Scholar 

  32. Piper HM, Schwartz P, Hütter JF, Spieckermann PG: Energy metabolism and enzyme release of cultured adult rat heart muscle cells during anoxia. J Mol Cell Cardiol 16: 995–1007, 1984

    PubMed  Google Scholar 

  33. Storch J, Bass NM: Transfer of fluorescent fatty acids from liver and heart fatty acid-binding proteins to model membranes. J Biol Chem 265: 7827–7831, 1990

    PubMed  Google Scholar 

  34. Kim HK, Storch J: Mechanism of free fatty acid transfer from rat heart fatty acid-binding protein to phospholipid membranes: Evidence for a collisional process. J Biol Chem 267: 20051–20056, 1992

    PubMed  Google Scholar 

  35. Storch J: Diversity of fatty acid-binding protein structure and function: Studies with fluorescent ligands. Mol Cell Biochem123: 45–53, 1993

    PubMed  Google Scholar 

  36. Vorum H, Brodersen R, Kragh-Hansen U, Pedersen AO: Solubility of long-chain fatty acids in phosphate buffer at pH 7.4. Biochim Biophys Acta 1126: 135–142, 1992

    PubMed  Google Scholar 

  37. Idell-Wenger JA, Grotyohann LW, Neely JR: Coenzyme A and carnitine distribution in normal and ischaemic hearts. J Biol Chem 253: 4310–4318, 1978

    PubMed  Google Scholar 

  38. Neely JR, Garber D, McDonough K, Idell-Wenger JA: Relationship between ventricular function and intermediates of fatty acid metabolism during myocardial ischemia: Effects of carnitine. In: MM Winbury, Y Abiko (eds.) Perspectives in Cardiovasc Res Vol 3: Ischaemic myocardium and antiangial drugs. Raven Press, New York, 1979, pp 225–239

    Google Scholar 

  39. Paulson DJ, Schmidt MJ, Romens J, Shug AL: Metabolic and physiological differences between zero-flow and low-flow myocardial ischemia: Effects of L-acetylcarnitine. Basic Res Cardiol 79: 551–561, 1984

    PubMed  Google Scholar 

  40. Van der Vusse GJ, Prinzen FW, Van Bilsen M, Engels W, Reneman RS: Accumulation of lipids and lipid-intermediates in the heart during ischaemia. Basic Res Cardiol 82 (suppl 1): 157–167, 1987

    PubMed  Google Scholar 

  41. Vork MM, Glatz JFC, Surtel DAM, Knubben HJM, Van der Vusse GJ: A sandwich enzyme linked immuno-sorbent assay for the determination of rat heart fatty acid-binding protein. Biochim Biophys Acta 1075: 199–205, 1991

    PubMed  Google Scholar 

  42. Mikkelsen J, Knudsen J: Acyl-CoA binding protein from cow. Binding characteristics and cellular and tissue distribution. Biochem J 248: 709–714, 1987

    PubMed  Google Scholar 

  43. Lamers JMJ, De Jonge-Stinis JT, Verdouw PD, Hülsmann WC: On the possible role of long chain fatty acyl carnitine accumulation in producing functional and calcium permeability changes in membranes during myocardial ischemia. Cardiovasc Res 21: 313–322, 1987

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glatz, J.F.C., Vork, M.M. & van der Vusse, G.J. Significance of cytoplasmic fatty acid-binding protein for the ischemic heart. Mol Cell Biochem 123, 167–173 (1993). https://doi.org/10.1007/BF01076489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076489

Key words

Navigation