Skip to main content
Log in

Expression of rat L-FABP in mouse fibroblasts: role in fat absorption

  • Cellular Fatty Acid-Binding Proteins II
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Fatty acid-binding proteins (FABP) are abundant cytosolic proteins whose level is responsive to nutritional, endocrine, and a variety of pathological states. Although FABPs have been investigatedin vitro for several decades, little is known of their physiological function. Liver L-FABP binds both fatty acids and cholesterol. Competitive binding analysis and molecular modeling studies of L-FABP indicate the presence of two ligand binding pockets that accomodate one fatty acid each. One fatty acid binding site is identical to the cholesterol binding site. To test whether these observations obtainedin vitro were physiologically relevant, the cDNA encoding L-FABP was transfected into L-cells, a cell line with very low endogenous FABP and sterol carrier proteins. Uptake of both ligands did not differ between control cells and low expression clones. In contrast, both fatty acid uptake and cholesterol uptake were stimulated in the high expression cells. In high expression cells, uptake of fluorescent cis-parinaric acid was enhanced more than that of trans-parinaric acid. This is consistent with the preferential binding of cis-fatty acids to L-FABP but in contrast to the preferential binding of trans-parinaric acid to the L-cell plasma membrane fatty acid transporter (PMFABP). These data show that the level of cytosolic fatty acids in intact cells can regulate both the extent and specificity of fatty acid uptake. Last, sphingomyelinase treatment of L-cells released cholesterol from the plasma membrane to the cytoplasm and stimulated microsomal acyl-CoA: cholesteryl acyl transferase (ACAT). This process was accelerated in high expression cells. These observations show for the first time in intact cells that L-FABP, a protein most prevalent in liver and intestine where much fat absorption takes place, may have a role in fatty acid and cholesterol absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FABP:

fatty acid-binding protein

L-FABP:

liver fatty acid-binding protein

I-FABP:

intestinal fatty acid-binding protein

H-FABP:

heart fatty acid-binding protein

A-FABP:

adipocyte fatty acid-binding protein

PMFABP:

plasma membrane fatty acid-binding protein

SCP-2:

sterol carrier protein-2

Dehydroergosterol (DHE):

d-5,7,9(11),22-ergostatetraene-3b-ol

cis-parinaric:

acid-9Z, 11E, 13E, 15Z-octatetraenoic acid

trans:

parinaric acid, 9E, 11E, 13E, 14E-octatetraenoic acid

BSA:

bovine serum albumin

KRH:

Krebs-Ringer-Henseleit buffer

References

  1. Paulussen RJA, Veerkamp JH: Intracellular fatty acid binding proteins. In: HJ Hilderson (ed.) Subcellular Chemistry, vol. 16. Intracellular Transfer of Lipid Molecules, Plenum Pub Corp NY, 1990, pp 175–226

    Google Scholar 

  2. Waggoner DW, Bernlohr DA: In situ labeling of the adipocyte lipid binding protein with 3-125I-iodo-4-azido-N-hexadecylsalicylamide. J Biol Chem 265: 11417–11420, 1990

    PubMed  Google Scholar 

  3. Hresko RC, Bernier M, Hoffman RD, Flores-Riveros J, Liao K, Laird DM, Lane MD: Identification of phosphorylated 422 (aP2) protein as pp 15, the 15-kilodalton target of the insulin receptor tyrosine kinase in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 85: 8835–8839, 1988

    PubMed  Google Scholar 

  4. Buelt MK, Xu Z, Banaszak LJ, Bernlohr DA: Structural and functional characterization of the phosphorylated adipocyte lipid-binding protein (pp 15), Biochemistry 31: 3493–3499

  5. Bordewick U, Heese M, Borchers T Robenek H, Spener F: Compartmentation of hepatic fatty acid binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis. Biol Chem Hoppe-Seyler 370: 229–238, 1989

    PubMed  Google Scholar 

  6. Borchers T, Unterberg C, Rudel H, Robenek H, Spener F: Subcellular distribution of cardiac fatty acid binding proteins in bovine heart muscle and quantitation with an ELISA. Biochim Biophys Acta 1002: 54–61, 1989

    PubMed  Google Scholar 

  7. Bassuk JA, Tsichlis PN, Sorof S: Liver fatty acid binding protein is the mitosis-associated polypeptide target of a carcinogen in rat hepatocytes. Proc Natl Acad Sci USA 84: 7547–7551

  8. Distel RJ, Robinson GS, Spiegelman BM: Fatty acid regulation of gene expression. Transcriptional and post-transcriptional mechanisms. J Biol Chem 267: 5937–5941, 1992

    PubMed  Google Scholar 

  9. Sacchettini JC, Gordon JI, Banaszak LJ: Crystal structure of rat I-FABP. Refinement and analysis of the E. coli derived protein with bound palmitate. J Mol Biol 208: 327–339, 1989

    PubMed  Google Scholar 

  10. Sacchetini JC, Gordon JI, Banaszak LJ: The structure of crystalline E. coli derived rat I-FABP at 2.5A. J Biol Chem 263: 5815–5819, 1988

    PubMed  Google Scholar 

  11. Scapin G, Gordon JI, Sacchettini JC: Refinement of the structure of rat I-FABP at 1.2 A resolution. J Biol Chem 267: 4253–4269, 1992

    PubMed  Google Scholar 

  12. Jones TA, Bergfors T, Sedzik J, Unge T: The three-dimensional structure of P2 myelin protein. EMBO J 7: 1597–1608, 1988

    PubMed  Google Scholar 

  13. Cistola DP, Sacchettini JC, Gordon JI: 13C-NMR studies of fatty acid-protein interactions: comparison of homologous FABP proteins produced in the intestinal epithelium. Mol Cell Biochem 98: 101–110, 1990

    PubMed  Google Scholar 

  14. Cistola DP, Sacchettini JC, Banaszak LJ, Walsh MT, Gordon JI: Fatty acid interactions with rat I-FABP and L-FABP expressed in E. coli: a comparative13C-NMR study. J Biol Chem 264: 2700–2710, 1989

    PubMed  Google Scholar 

  15. Storch J, Bass NM, Kleinfeld AM: Studies on the fatty acid binding site of rat liver FABP using fluorescent fatty acids. J Biol Chem 264: 8708–8713, 1989

    PubMed  Google Scholar 

  16. Nemecz G, Hubbell T, Jefferson JR, Lowe JB, Schroeder F: Interaction of fatty acids with recombinant rat intestinal and liver fatty acid binding proteins. Arch Biochem Biophys 286: 300–309, 1991

    PubMed  Google Scholar 

  17. Nemecz G, Jefferson JR, Schroeder F: Polyene fatty acid interactions with recombinant intestinal and liver fatty acid binding proteins: Spectroscopic studies. J Biol Chem 266: 17112–17123, 1991

    PubMed  Google Scholar 

  18. Nemecz G, Schroeder F: Selective binding of cholesterol byrecombinant FABPs. J Biol Chem 266: 17180–17186, 1991

    PubMed  Google Scholar 

  19. Wilton DC: Studies on fatty acid binding proteins: The purification of rat liver fatty acid binding protein and the role of cysteine-69 in fatty acid binding. Biochem J 261: 273–276, 1989

    PubMed  Google Scholar 

  20. Sziegoleit A: Purification and characterization of a cholesterol binding protein from human pancreas. Biochem J 207: 573–582, 1982

    PubMed  Google Scholar 

  21. Habig WH, Pabst MJ, Fleischner G, Gatmaitan Z, Arias IM, Jakoby WB: The identity of glutatione-S-transferase B with ligandin, a major binding protein of liver. Proc Natl Acad Sci USA 71: 3879–3882, 1974

    PubMed  Google Scholar 

  22. Ho M-T P, Massey JB, Pownall HJ, Anderson RE, Hollyfield JG: Mechanism of vitamin A movement between rod outer segments, interphotoreceptor retinoid-binding protein, and liposomes. J Biol Chem 264: 928–935, 1989

    PubMed  Google Scholar 

  23. Wilkinson TCI, Wilton DC: Studies on fatty acid binding proteins. The binding properties of rat liver FABP. Biochem J 247: 485–488, 1987

    PubMed  Google Scholar 

  24. Vincent SH, Muller-Eberhard U: A protein of the Z-class of liver cytosolic proteins that preferentially binds heme. J Biol Chem 260: 14521–14528, 1985

    PubMed  Google Scholar 

  25. Haunerland N, Jagschies G, Schulenberg H, Spener F: Occurrence of two fatty acid binding proteins in bovine liver cytosol and their binding of fatty acids, cholesterol, and other lipophilic ligands. Hoppe-Seyler's Z Physiol Chem 365: 365–376, 1984

    PubMed  Google Scholar 

  26. Keuper HJK, Klein RA, Spener F: Spectroscopic investigations on the binding site of bovine hepatic fatty acid-binding protein. Evidence for the existence of a single binding site for two fatty acid molecules. Chem Phys Lip 38: 159–173, 1985

    PubMed  Google Scholar 

  27. Peeters RA, in't Groen MAPM, De Moel MP, Van Moerkerk HJB, Veerkamp JH: The binding affinity of fatty acid-binding proteins from human, pig, and rat liver for different fluorescent fatty acids and other ligands. Int J Biochem 21: 407–418, 1989

    PubMed  Google Scholar 

  28. Bass NM: Function and regulation of hepatic and intestinal fatty acid-binding proteins. Chem Phys Lip 38: 95–114, 1985

    Google Scholar 

  29. Schroeder F, Butko P, Nemecz G, Jefferson JR, Powell D, Rymaszewski Z, Dempsey ME, Kukowaska-Latallo J, Lowe JB: Sterol carrier protein: a ubiquitous protein in search of a function. In: R Verna, R Blumenthal, L Frati (eds), Bioengineered Molecules: Basic and Clinical Aspects, Raven Press, NY, 1989, pp 29–45

    Google Scholar 

  30. Schroeder F, Jefferson JR, Kier AB, Knittel J, Scallen TJ, Wood WG, Hapala I: Membrane cholesterol dynamics: cholesterol domain and kinetic pools. Proc Soc Exptl Biol Med 196: 235–252, 1991

    Google Scholar 

  31. Fischer RT, Cowlen MS, Dempsey ME, Schroeder F: Fluorescence of ergostatetraene-3b-o1 in micelles, sterol carrier protein complexes, and plasma membranes. Biochemistry 24: 3322–3331, 1985

    PubMed  Google Scholar 

  32. Schroeder F, Dempsey ME, Fischer RT: Sterol and squalenecarrier protein interactions with fluorescent cholestatrienol. J Biol Chem 260: 2904–2911, 1985

    PubMed  Google Scholar 

  33. Rüstow B, Risse S, Kunze D: Endogenes Lipidmuster, Organverteilung und Diatbeeinflussung einer fettsaurebinden Proteinfraction des Leberzytosols der Ratte. Acta Biol Med Germ 41: 439–445, 1982

    PubMed  Google Scholar 

  34. Sacchettini JC, Gordon JI, Scapin G: Tertiary structure of intestinal fatty acid-binding protein at 1.2 angstrom resolution. Mol & Cell Biochem, this issue, 1993

  35. Sacchettini JC, Gordon JI, Banaszak LJ: Refined apoprotein structure of rat intestinal fatty acid binding protein produced in E. coli. Proc Natl Acad Sci USA 86: 7736–7740, 1989

    PubMed  Google Scholar 

  36. Prevelige Jr P, Fasman G: Chou-Fasman prediction of the secondary structure of proteins. The Chou-Fasman-Prevelige algorithm. In G Fasman (ed.) Prediction of Protein Structure and the Principles of Protein Conformation. Plenum Pub Corp, NY, 1989, pp 391–416

    Google Scholar 

  37. Garnier GJ, Robson B: The GOR method for predicting secondary structures in proteins. In: G Fasman (ed.) Prediction of Protein Structure and the Principles of Protein Conformation. Plenum Pub Corp, NY, 1989, pp 417–465

    Google Scholar 

  38. Gordon JI, Alpers DH, Ockner RK, Strauss AW: The nucleotide sequence of rat liver fatty acid binding protein mRNA. J Biol Chem 258: 3356–3363, 1983

    PubMed  Google Scholar 

  39. Alpers DH, Strauss AW, Ockner RK, Bass NM, Gordon JI: Cloning of a cDNA encoding rat intestinal fatty acid binding protein. Proc Natl Acad Sci USA 81: 313–317, 1984

    PubMed  Google Scholar 

  40. Lowe JB, Boguski MS, Sweetser DA, Elshourbagy NA, Taylor JM, Gordon JI: Human liver fatty acid binding protein. Isolation of a full length cDNA and comparative sequence analyses of orthologous and paralogous proteins. J Biol Chem 260: 3413–3417, 1985

    PubMed  Google Scholar 

  41. Colles SM, Myers-Payne SC, Emge T, Weintraub H, Woodford JK, Nemecz G, Schroeder F: A fluorescence dynamic and circular dichroic study of rat liver fatty acid binding protein-ligand interaction. Biochemistry, to be submitted, 1993

  42. Schulenberg-Shell H, Schafer P, Keuper HJ, Stanislawski B, Hoffman E, Ruterjans H, Spener F: Interactions of fatty acids with neutral fatty acid binding protein from bovine liver. Eur J Biochem 170: 565–574, 1988

    PubMed  Google Scholar 

  43. Hubbell TM, Behnke WD, Woodford JK, Schroeder F: Fatty acyl CoA interaction with recombinant liver fatty acid binding protein and recombinant intestinal fatty acid binding protein. J Biol Chem, submitted, 1993

  44. Cistola DP, Miller KR, Hodsdon ME, Jacoby M, Cheng L, Gordon JI, Li E, Toner JT: Structure-function studies of fatty acid-binding proteins from intestine. Mol & Cell Biochem, this issue, 1992

  45. Peeters RA, Veerkamp JH, Demel RA: Are fatty acid binding proteins involved in fatty acid transfer? Biochim Biophys Acta 1002: 8–13, 1989

    PubMed  Google Scholar 

  46. Spener F, Borchers T, Mukherjea M: On the role of fatty acid binding proteins in fatty acid transport and metabolism. FEBS Lett 244: 1–5, 1989

    PubMed  Google Scholar 

  47. Schroeder F, Butko P, Nemecz G, Scallen TJ: Interactions of fluorescent ergostatetraene-3b-o1 with SCP-2. J Biol Chem 265: 151–157, 1990

    PubMed  Google Scholar 

  48. Colles SM, Woodford JK, Myers-Payne SC, Moncecchi D, McLean LR, Billheimer JT, Nemecz G, Schroeder F: Recombinant human SCP-2 interacts with sterols. J Biol Chem, submitted, 1993

  49. Nemecz G, Fontaine RN, Schroeder F: A fluorescence and radiolabel study of sterol exchange between membranes. Biochim Biophys Acta 943: 511–521, 1988

    PubMed  Google Scholar 

  50. Nemecz G, Schroeder F: Time resolved fluorescence investigation of membrane cholesterol heterogeneity and exchange. Biochemistry 27: 7740–7749, 1988

    PubMed  Google Scholar 

  51. Butko P, Hapala I, Nemecz G, Schroeder F: Sterol domains in phospholipid membranes: dehydroergosterol polarization measures molecular sterol transfer. J Biochem Biophys Meth 24: 15–37, 1992

    PubMed  Google Scholar 

  52. Schroeder F, Butko P, Hapala I, Scallen TJ: Intermembrane cholesterol transfer: role of sterol carrier proteins and phosphatidylserine. Lipids 25: 669–674, 1990

    PubMed  Google Scholar 

  53. Woodford JK, Hapala I, Powell DM, Jefferson JR, Knittel J, Scallen TJ, Schroeder F: SCP-2 alters sterol domains in L-cell fibroblast plasma membranes. Biochim Biophys Acta, submitted, 1992

  54. Ishibashi T, Bloch K: Intermembrane transfer of 5a-cholest-7-en-3b-o1: Facilitation by supernatant protein (SCP). J Biol Chem 256: 12962–12967, 1981

    PubMed  Google Scholar 

  55. Burton P, Bloch K: Studies on the mode of action of SCP in the dehydrogenation of 5-cholest-7-en-3b-o1. J Biol Chem 260: 7289–7294.

  56. Rothblat GH, Mahlberg FH, Johnson WJ, Phillips MC: Apolipoproteins, membrane cholesterol domains, and the regulation of cholesterol efflux. J Lipid Res 33: in press, 1992

  57. Mahlberg FH, Rothblat GH: Cellular cholesterol efflux: role of cell membrane kinetic pools and interaction with apo-lipoproteins A-I, ApII, and C s. J Biol Chem 267: 4541–4550, 1992

    PubMed  Google Scholar 

  58. Zhou S-L, Stump D, Sorrentino D, Potter BJ, Berk PD: Adipocyte differentiation of 3T3-L1 cells involves augmented expression of a 43-kDa plasma membrane fatty acid binding protein. J Biol Chem 267: 14456–14461, 1992

    PubMed  Google Scholar 

  59. Jefferson JR, Powell DM, Rymaszewski Z, Kukowska-Latallo V, Lowe JB, Schroeder F: Altered membrane structure in transfected mouse L-cell fibroblasts expressing rat liver fatty acid binding protein. J Biol Chem 265: 11062–11068, 1990

    PubMed  Google Scholar 

  60. Jefferson JR, Slotte JP, Nemecz G, Pastuszyn A, Scallen TJ, Schroeder F: Intracellular sterol distribution in transfected mouse L-cell fibroblasts expressing rat liver fatty acid binding protein. J Biol Chem 266: 5486–5496, 1991

    PubMed  Google Scholar 

  61. Jefferson JR, Incerpi S, Murphy EJ, Prows DR, hertelendy ZI, Heyliger CE, Schroeder F: Cis-parinaric acid transport in L-cell fibroblasts: Hormone effects. J Biol Chem, submitted, 1992

  62. Heyliger CE, Khesghi TJ, Murphy EJ, Meyers-Payne S, Schroeder F: Fatty acid specificity of L-cell fibroblast plasma membrane fatty acid transport. Biochem Biophys Acta, submitted, 1993

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, F., Jefferson, J.R., Powell, D. et al. Expression of rat L-FABP in mouse fibroblasts: role in fat absorption. Mol Cell Biochem 123, 73–83 (1993). https://doi.org/10.1007/BF01076477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076477

Key words

Navigation