Skip to main content
Log in

Interferon modulates the messenger RNA of G1-controlling genes to suppress the G1-to-S transition in Daudi cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Interferon (IFN) is one of the potent antiproliferative cytokines and is used to treat some selected cancers. IFN arrests the growth of Burkitt Iymphoma derived cell line Daudi cells in the G1 phase. G1-to-S progression is controlled by positive and negative regulatory genes. Therefore, we investigated the effects of IFN on G1-controlling genes. Expression of cyclin-dependent kinases (Cdks 2, 3, 4, 5, 6), MO 15/Cdk7, and cyclins E and H was studied to assess positive regulators, while p15Ink4B, p16Ink4, p18, p21CipI, and p27Kip1 were assessed as negative regulators. Cdks 2, 4, 6 and cyclin E were markedly down-regulated. MO15/Cdk7 expression showed little change, but its regulatory subunit (cyclin H) was down-regulated like cyclin E. Expression of p15Ink4B and p16Ink4 was not observed. p18 was induced until 48 h and its expression returned to the initial level at 72 h. In contrast, p21Cip1 mRNA expression remained at the baseline level throughout IFN treatment, while the expression of p27Kip1 increased at 48 and 72 h. Taken together, these data indicate that IFN changes the messenger RNA of G1-controlling genes towards the suppression of G1-to-S transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamada H, Shimoyama M: Growth inhibitory activity of human lymphoblastoid and fibroblast interferonsin vitro. Gann 74:299–307, 1983

    PubMed  Google Scholar 

  2. Clemens MJ, McNurlan MA: Regulation of cell proliferation and differentiation by interferons. Biochem J 226:345–360, 1985

    PubMed  Google Scholar 

  3. Meurs E, Chong K, Galabru J, Thomas NSB, Kerr IM, Williams BRG, Hovanessian AG: Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62:379–390, 1990

    PubMed  Google Scholar 

  4. Thomis DC, Samuel CE: Mechanism of interferon action: Autoregulation of RNA-dependent P1/elF-2α protein kinase (PKR) expression in transfected mammalian cells. Proc Natl Acad Sci USA 89: 10837–10841, 1992

    PubMed  Google Scholar 

  5. Meurs EF, Galabru J, Barber GN, Katze MG, Hovanessian AG: Tumor suppresser function of the interferon-induced double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 90: 232–236, 1993

    PubMed  Google Scholar 

  6. Meurs EF, Galabru J, Barber GN, Katze MG, Hovanessian AG: Tumor suppression function of the interferon-induced double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 90: 232–236, 1993

    PubMed  Google Scholar 

  7. Sen GC, Lengyel P: The interferon system. J Biol Chemist 267: 5017–5020, 1992

    Google Scholar 

  8. Zhou A, Hassel BA, Silverman RH: Expression cloning of 2-5A-dependent RNAase: A uniquely regulated mediator of interferon action. Cell 72: 753–765, 1993

    PubMed  Google Scholar 

  9. Novick D, Cohen B, Rubinstein M: The human interferon α/β receptor: Characterization and molecular cloning. Cell 77: 391–400, 1994

    PubMed  Google Scholar 

  10. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, Silvennoinen O: Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci 19: 222–227, 1994

    PubMed  Google Scholar 

  11. Darnell JE, Kerr IM, Stark GR: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1421, 1994

    PubMed  Google Scholar 

  12. Shuai K, Ziemiecki A, Wilks AF, Harpur AG, Sandowski HB, Gilman MZ, Darnell JE: Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 366: 580–583, 1993

    PubMed  Google Scholar 

  13. Silvennoinen O, Ihle JN, Schlessinger J, Levy DE: Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature 366: 583–585, 1993

    PubMed  Google Scholar 

  14. Beadling C, Guschin D, Witthuhn BA, Ziemiecki A, Ihle JN, Kerr IM, Cantrell DA: Activation of JAK kinases and STAT proteins by interleukin-2 and interferon α, but not the T cell antigen receptor, in human T lymphocytes. EMBO J 13: 5605–5615, 1994

    PubMed  Google Scholar 

  15. Tanaka N, Ishihara M, Kitagawa M, Harada H, Kimura T, Matsuyama T, Lamphier MS, Aizawa S, Mak TW, Taniguchi T: Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77: 829–839, 1994

    PubMed  Google Scholar 

  16. Roos G, Leanderson T, Lundgren E: Interferon-induced cell cycle changes in human hematopoietic cell lines and fresh leukemic cells. Cancer Res 44: 2358–2362, 1984

    PubMed  Google Scholar 

  17. Yamada H, Ochi K, Nakada S, Nemoto T, Horiguchi-Yamada J: Changes of cell cycle-regulating genes in interferon-treated Daudi cells. Mol Cell Biochem 136: 117–123, 1994

    PubMed  Google Scholar 

  18. Einat M, Resnitzky D, Kimchi A: Close link between reduction of cmyc expression by interferon and G0/G1 arrest. Nature 313: 597–600, 1985

    PubMed  Google Scholar 

  19. Zhang K, Kumar R: Interferon α inhibits cyclin E and cyclin D1 dependent CDK2 kinase activity associated with RB protein and E2F in Daudi cells. Biochem Biophys Res Commun 200: 522–528, 1994

    PubMed  Google Scholar 

  20. Resnitzky D, Tiefenbrun N, Berrisi H, Kimchi A: Interferons and interleukin-6 suppress phosphorylation of the retinoblastoma protein in growth-sensitive hematopoietic cells. Proc Natl Acad Sci USA 89: 402–406, 1992

    PubMed  Google Scholar 

  21. Melamed D, Tiefenbrun N, Yarden A, Kimchi A: Interferons and interleukin-6 suppress the DNA-binding activity of E2F in growthsensitive hematopoietic cells. Mol Cell Biol 13: 5255–5265, 1993

    PubMed  Google Scholar 

  22. Sherr CJ: G1 phase progression: Cycling on cue. Cell 79: 551–555, 1994

    PubMed  Google Scholar 

  23. Meyerson M, Enders GH, Wu C, Su C, Gorka C, Nelson C, Harlow E, Tsai L: A family of huamn cdc2-related protein kinases. EMBO J 11: 2909–2917, 1992

    PubMed  Google Scholar 

  24. Sherr CJ: Mammalian G1 cyclins. Cell 73: 1059–1065, 1993

    PubMed  Google Scholar 

  25. Meyerson M, Harlow E: Identification of G1 kinase activity for cdk6, a novel cyclin D patner. Mol Cell Biol 14: 2077–2086, 1994

    PubMed  Google Scholar 

  26. Bates S, Bonetta L, MacAllan D, Parry D, Holder A, Dickson C, Peters G: CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene 9: 71–79, 1994

    PubMed  Google Scholar 

  27. Fesquet D, Labbé J, Derancourt J, Capony J, Galas S, Girard F, Loica T, Shuttleworth J, Dorée M, Cavadore J: The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thrl 61 and its homologues. EMBO J 12: 3111–3121, 1993

    PubMed  Google Scholar 

  28. Poon RY, Yamashita K, Adamczewski JP, Hunt T, Shuttleworth J: The cdc2-related protein p40M015 is the catalytic subunit of a protein kinase that can activate p33cok2 and p34cdc2. EMBO J 12: 3123–3132, 1993

    PubMed  Google Scholar 

  29. Solomon MJ, Harper JW, Shuttleworth J: CAK, the p34cdc2 activatig kinase, contains a protein identical or closely related to p40M015. EMBO J 12: 3133–3142, 1993

    PubMed  Google Scholar 

  30. Levedakou EN, He M, Baptist EW, Craven RJ, Cance WG, Welcsh PL, Simmons A, Naylor SL, Leach RJ, Lewis TB, Bowcock A, Liu ET: Two novel human serine/threonine kinases with homologies to the cell cycle regulatingXenopus MO15, and NIMA kinases: cloning and characterization of their expression pattern. Oncogene 9: 1977–1988, 1994

    PubMed  Google Scholar 

  31. Wu L, Yee A, Liu L, Carbonaro-Hall D, Venkatesan N, Tolo VT, Hall FL: Molecular cloning of the human CAK1 gene encoding a cyclin-dependent kinase-activating kinase. Oncogene 9: 2089–2096, 1994

    PubMed  Google Scholar 

  32. Darbon J, Devault A, Taviaux S, Fesquet D, Martinez A, Galas S, Cavadore J, Dorée M, Blanchard J: Cloning, expression and subcellular localization of the human homolog of p40MO15 catalytic subunit of cdk-activating kinase. Oncogene 9: 3127–3138, 1994

    PubMed  Google Scholar 

  33. Matsuoka M, Kato J, Fisher RP, Morgan DO, Sherr CJ: Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase. Mol Cell Biol 14: 7265–7275, 1994

    PubMed  Google Scholar 

  34. Fisher RP, Morgan DO: A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78: 713–724, 1994

    PubMed  Google Scholar 

  35. Mäkelä TP, Tassan J, Nigg EA, Frutiger S, Hughes GJ, Weinberg RA: A cyclin associated with the CDK-activating kinase MO15. Nature 371: 254–257, 1994

    PubMed  Google Scholar 

  36. Hannon GJ, Beach D: p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371: 257–261, 1994

    PubMed  Google Scholar 

  37. Serrano M, Hannon GJ, Beach D: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366: 704–707, 1993

    PubMed  Google Scholar 

  38. Guan K, Jenkins CW, Li Y, Nichols MA, Wu X, O'Keefe CL, Matera AG, Xiong Y: Growth suppression byp18, a p16INK4/MTSI-and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 8: 2939–2952, 1994

    PubMed  Google Scholar 

  39. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ: The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclindependent kinases. Cell 75: 805–816, 1993

    PubMed  Google Scholar 

  40. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B:WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825, 1993

    PubMed  Google Scholar 

  41. Polyak K, Lee M, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massagué J: Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78: 59–66, 1994

    PubMed  Google Scholar 

  42. Toyoshima H, Hunter T: p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78: 67–74, 1994

    PubMed  Google Scholar 

  43. Hunter T, Pines J: Cyclins and cancer II: Cyclin D and CDK inhibitors come of age. Cell 79: 573–582, 1994

    PubMed  Google Scholar 

  44. Peter M, Herskowitz I: Joining the complex: Cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell 79: 181–184, 1994

    PubMed  Google Scholar 

  45. Maniatis T, Fritsch EF, Sambrook J: Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, New York, 1982, pp 187–210

    Google Scholar 

  46. Horiguchi-Yamada J, Yamada H, Nakada S, Ochi K, Nemoto T: Changes of G1 cyclins, cdk2, and cyclin A during the differentiation of HL60 cells induced by TPA. Mol Cell Biochem 132: 31–37, 1994

    PubMed  Google Scholar 

  47. Resnitzky D, Gossen M, Bujard H, Reed SI: Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 14: 1669–1679, 1994

    PubMed  Google Scholar 

  48. Heuvel S, Harlow E: Distinct roles for cyclin-dependent kinases in cell cycle control Science 262: 2050–2054, 1993

    PubMed  Google Scholar 

  49. Kiyokawa H, Richon VM, Rifkind RA, Marks PA: Supression of cyclin-dependent kinase 4 during induced differentiation of erythroleukemia cells. Mol Cell Biol 14: 7195–7203, 1994

    PubMed  Google Scholar 

  50. Kiess M, Gill RM, Hamel PA: Expression of the positive regulator of cell cycle progression, cyclin D3, is induced during differentiation of myoblasts into quiescent myotubes. Oncogene 10: 159–166, 1995

    PubMed  Google Scholar 

  51. Lew J, Huang Q, Qi Z, Winkfein RJ, Aebersold R, Hunt T, Wang JH: A brain-specific activator of cyclin-dependent kinase 5. Nature 371: 423–426, 1994

    PubMed  Google Scholar 

  52. Tsai L, Delalle I, Caviness VS, Chae T, Harlow E: p35 is a neural specific regulatory subunit of cyclin-dependent kinase 5. Nature 371: 419–423, 1994

    PubMed  Google Scholar 

  53. Schnier JB, Gadbois DM, Nishi K, Bradbury EM: The kinase inhibitor Staurosporine induces G1 arrest at two points: effect on Retinoblastoma protein phosphorylation and cyclin-dependent kinase 2 in normal and transformed cells. Cancer Res. 54: 5959–5963, 1994

    PubMed  Google Scholar 

  54. Ogawa S, Hirano N, Sato N, Takahashi T, Hangaishi A, Tanaka K, Kurokawa M, Tanaka T, Mitani K, Yazaki Y, Hirai H: Homozygous loss of the cyclin-dependent kinase 4-inhibitor (p16) gene in human leukemias. Blood 84: 2431–2435, 1994

    PubMed  Google Scholar 

  55. He J, Allen JR, Collins VP, Allalunis-Turner MJ, Godbout R, Day RS, James CD: CDK4 amplification is an alternative mechanism top16 gene homozygous deletion in glioma cell lines. Cancer Res. 54: 5804–5807, 1994

    PubMed  Google Scholar 

  56. Mori T, Miura K, Aoki T, Nishihira T, Mori S, Nakamura Y: Frequent somatic mutation of theMTS1/CDK4I (multiple tumor suppressor/cyclin-dependent kinase 4 inhibitor) gene in esophageal squamous cell carcinoma. Cancer Res. 54: 3396–3397, 1994

    PubMed  Google Scholar 

  57. Zhou X, Tarmin L, Yin J, Jiang H, Suzuki H, Rhyu M, Abraham JM, Meltzer SJ: TheMTS1 gene is frequently mutated in primary human esophageal tumors. Oncogene 9: 3737–3741, 1994

    PubMed  Google Scholar 

  58. Li Y, Nichols MA, Shay JW, Xiong Y: Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res 54: 6078–6082, 1994

    PubMed  Google Scholar 

  59. Parry D, Bates S, Mann DJ, Peters G: Lack of cyclin D-Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MST1 tumour suppressor gene product. EMBO J 14: 503–511, 1994

    Google Scholar 

  60. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, Magrath IT, Knowles DM, Dalla-Favera R: p53 mutations in human Iymphoid malignancies: Association with Burkitt Iymphoma and chronic Iymphocytic leukemia. Proc Natl Acad Sci USA 88: 5413–5417, 1991

    PubMed  Google Scholar 

  61. Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI: p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76: 1013–1023, 1994

    PubMed  Google Scholar 

  62. Jiang H, Lin J, Su Z, Collart FR, Huberman E, Fischer PB: Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 9: 3397–3406, 1994

    PubMed  Google Scholar 

  63. Steinman RA, Hoffman B, Iro A, Guillouf C, Liebermann DA, El Houseini ME: Induction ofp21 (WAF-1/CIP1) during differentiation. Oncogene 9: 3389–3396, 1994

    PubMed  Google Scholar 

  64. Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, Givol D: Induction ofWAF1/CIP1 by a p53-independent pathway. Cancer Res 54: 3391–3395, 1994

    PubMed  Google Scholar 

  65. Sheikh MS, Li X, Chen J, Shao Z, Ordonez JV, Fontana JA: Mechanisms of regulation of WAF1/Cipl gene expression in human breast carcinoma: role of p53-dependent and independent signal transduction pathways. Oncogene 9: 3407–3415, 1994

    PubMed  Google Scholar 

  66. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR: Cloning of senescent cell-derived inhibitiors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98, 1994

    PubMed  Google Scholar 

  67. Zhang H, Hannon GJ, Beach D: p21-containing cyclin kinases exist in both active and inactive states. Genes Dev 8: 1750–1758, 1994

    PubMed  Google Scholar 

  68. Li R, Waga S, Hannon GJ, Beach D, Stillman B: Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371: 534–537, 1994

    PubMed  Google Scholar 

  69. Flores-Rozas H, Kelman Z, Dean FB, Pan Z, Harper JW, Flledge SJ, O'Donnell M, Hurwitz J: Cdk-interacting protein 1 directly binds with proliferating cell nuclear antigen and inhibits DNA replication catalyzed by the DNA polymerase δ holoenzyme. Proc Natl Acad Sci USA 91: 8655–8659, 1994

    PubMed  Google Scholar 

  70. Waga S, Hannon GJ, Beach D, Stillman B: The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369: 574–578, 1994

    PubMed  Google Scholar 

  71. Polyak K, Kato J, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A: p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev 8: 9–22, 1994

    PubMed  Google Scholar 

  72. Ninomiya-Tsuji J, Nomoto S, Yasuda H, Reed SI, Matsumoto K: Cloning of a human cDNA encoding a CDC2-related kinase by complementation of a budding yeastcdc28 mutation. Proc Natl Acad Sci USA 88: 9006–9010, 1991

    PubMed  Google Scholar 

  73. Hanks SK: Homology probing: identification of cDNA clones encoding members of teh protein-serine kinase family. Proc Natl Acad Sci USA 84: 388–392, 1987

    PubMed  Google Scholar 

  74. Wang J, Chenivesse X, Henglein B, Brechot C: Hepatitis B virus integration in cyclin A gene in a hepatocellular carcinoma, Nature 343: 555–557, 1990

    PubMed  Google Scholar 

  75. Lew DJ, Dulic V, Reed SI: Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66: 1197–1206, 1991

    PubMed  Google Scholar 

  76. Kunzendorf U, Krüger-Krasagakes S, Notter M, Hock H, Walz G, Diamantstein T: A sialyl-Lex-negative melanoma cell line binds to E-selectin but not to P-selectin. Cancer Res 54: 1109–1112, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, H., Ochi, K., Nakada, S. et al. Interferon modulates the messenger RNA of G1-controlling genes to suppress the G1-to-S transition in Daudi cells. Mol Cell Biochem 152, 149–158 (1995). https://doi.org/10.1007/BF01076077

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076077

Key words

Navigation