Skip to main content
Log in

The predictive accuracy for estimating infinite dilution activity coefficients by γ-based UNIFAC

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The predictive accuracy for estimating infinite dilution activity coefficients γ by a modification of the UNIFAC method wherein the group interaction parameters were based on only γ data (referred to as ‘γ-based UNIFAC’) has been studied. Estimates and measured values were compared for six prototypical solutes in a series of homologous n-alkanes, l-alcohols and alkanenitrile solvents. Despite the fact that the interaction parameters were derived using only γ data, this approach still gave serious errors due to several inherent problems in the original UNIFAC model. Its performance is sometimes even poorer than that of the original UNIFAC method. For example for nitromethane in alcohols and p-dioxane in nitriles γ values predicted by the γ-based UNIFAC are essentially zero. The large errors for these systems are most likely due to inaccurate interaction parameters in the γ-based UNIFAC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. McMillan and J. Mayers,J. Chem. Phys. 13, 176 (1954).

    Google Scholar 

  2. M. Roth and J. Novak,J. Chromatogr. 258, 23 (1983).

    Google Scholar 

  3. J. Gmehling and U. Weidlich,Fluid Phase Equilibria 27, 171 (1986).

    Google Scholar 

  4. S. Petrovic, S. Lomic, and I. Sefer,J. Chromatogr. 348, 49 (1985).

    Google Scholar 

  5. J. Conder and C. Young,Physicochemicl Measurements by Gas Chromtogrphy (Wiley, New York, 1979).

    Google Scholar 

  6. R. J. Laub and R. L. Pecsok,Physicochemicl Applictions of Gas Chromtography (Wiley, New York, 1978).

    Google Scholar 

  7. R. Thomas, B. Newman, G. Nicolaides, and C. A. Eckert,J. Chem. Eng. Data. 27, 233 (1982).

    Google Scholar 

  8. K. Wong and C. A. Eckert,Ind. Eng. Chem. Fundam. 10, 20 (1971).

    Google Scholar 

  9. N. Katsonos, G. Karaiskakis, and P. Agathonos,J. Chromatogr. 349, 369 (1986).

    Google Scholar 

  10. D. Richon, F. Sorrentino, and A. Voilley,Ind. Eng. Chem. Process Des. Dev. 24, 1160 (1985).

    Google Scholar 

  11. A. Hussam and P. W. Carr,Anal. Chem. 57, 793 (1985).

    Google Scholar 

  12. J. H. Park, A. Hussam, P. Couasnon, D. Fritz, and P. W. Carr,Anal. Chem. 59, 1970 (1987).

    Google Scholar 

  13. A. Fredenslund, R. Jones, and J. M. Prausnitz,AIChE J. 21, 1086 (1975).

    Google Scholar 

  14. U. Weidlich and J. Gmehling,Ind. Eng. Chem. Res. 26, 1372 (1987).

    Google Scholar 

  15. A. Fredenslund, J. Gmehling, and P. Rasmussen,Vapor-Liquid Equilibri Using UNIFAC (Elsevier, Amsterdam, 1977).

    Google Scholar 

  16. J. Zakarian, F. Anderson, J. Boyd, and J. M. Prausnitz,Ind. Eng. Chem. Process Des. Dev. 18, 657 (1979).

    Google Scholar 

  17. I. Kikic, P. Alessi, P. Rasmussen, and A. Fredenslund,Can. J. Chem. 58, 253 (1980).

    Google Scholar 

  18. E. Thomas and C. A. Eckert,Ind. Eng. Chem. Process Des. Dev. 23, 194 (1984).

    Google Scholar 

  19. J. H. Park and P. W. Carr,Anal. Chem. 59, 2596 (1987).

    Google Scholar 

  20. H. Kehiaian,Fluid Phase Equilibria 13, 243 (1983).

    Google Scholar 

  21. H. Wu and S. Sandler,AIChE J. 35, 168 (1989).

    Google Scholar 

  22. K. Pividal and S. Sandler,J. Chem. Eng. Data 35, 53 (1990).

    Google Scholar 

  23. B. Larsen, P. Rasmussen, and A. Fredenslund,Ind. Eng. Chem. Res. 26, 2274 (1987).

    Google Scholar 

  24. P. Alessi, I. Kikic, A. Fredenslund, and P. Rasmussen,Can. J. Chem. Eng. 60, 300 (1982).

    Google Scholar 

  25. J. Bastos, M. Soares, and A. Medina,Ind. Eng. Chem. Res. 27, 1269 (1988).

    Google Scholar 

  26. L. Schreiber and C. A. Eckert,Ind. Eng. Chem. Process Des. Dev. 10, 572 (1971).

    Google Scholar 

  27. J. E. Brady and P. W. Carr,J. Phys. Chem. 89, 1813 (1985).

    Google Scholar 

  28. J. Gmehling, P. Rasmussen, and A. Fredenslund,Ind. Eng. Chem. Process Des. Dev. 21, 118 (1982).

    Google Scholar 

  29. E. Macedo, U. Weidlich, J. Gmehling, and P. Rasmussen,Ind. Eng. Chem. Process Des. Dev. 22, 676 (1983).

    Google Scholar 

  30. D. Tiegs, J. Gmehling, P. Rasmussen, and A. Fredenslund,Ind. Eng. Chem. Res. 26, 159 (1987).

    Google Scholar 

  31. J. Hildebrand,Proc. Ntl. Acd. Sci. USA 76, 6040 (1979).

    Google Scholar 

  32. S. Skjold-Jorgensen,Fluid Phase Equilibria 16, 312 (1984).

    Google Scholar 

  33. C. A. Eclert, M. McNiel, B. Scott, and L. Halas,AIChE J. 32, 820 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Lee, J.E. & Carr, P.W. The predictive accuracy for estimating infinite dilution activity coefficients by γ-based UNIFAC. J Solution Chem 20, 1189–1198 (1991). https://doi.org/10.1007/BF01075135

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01075135

Key words

Navigation