Skip to main content
Log in

Lithium bromide in acetonitrile: Thermodynamics, theory, and simulation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A variety of methods has been used for the study of lithium bromide solutions in acetonitrile yielding by their combination reliable information on different levels of approximation. Osmotic coefficients based on precise vapor pressure measurements are reproduced by CM (chemical model) and HNC (hypernetted chain) calculations and by BD (brownian dynamics) simulations. The results of neutron scattering experiments are treated with the help of HNC and BD methods. Hartree-Fock calculations on isolated LiBr pairs and solvated lithium ions yield reliable particle distances and reveal the geometry of the lithium solvation sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Barthel, R. Neueder, and G. Lauermann,J. Solution Chem. 14, 621 (1985).

    Google Scholar 

  2. J. Barthel, G. Lauermann, and R. Neueder,J. Solution Chem. 15, 851 (1986).

    Google Scholar 

  3. J. Barthel and G. Lauermann,J. Solution Chem. 15, 869 (1986).

    Google Scholar 

  4. J. Barthel and W. Kunz,J. Solution Chem. 17, 399 (1988).

    Google Scholar 

  5. J. Barthel, H.-J. Gores, G. Schmeer, and R. Wachter, inTopics in Current Chemistry, Vol. II, F. L. Boschke, ed., (Springer, Heidelberg, 1983).

    Google Scholar 

  6. J. Barthel,Pure Appl. Chem. 51, 2093 (1979).

    Google Scholar 

  7. P. S. Ramanathan and H. L. Friedman,J. Chem. Phys. 54, 1086 (1971).

    Google Scholar 

  8. J. Barthel, W. Kunz, G. Lauermann, and N. Neueder,Ber. Bunsenges. Phys. Chem. 92, 1372 (1988).

    Google Scholar 

  9. G. Lauermann, W. Kunz, and J. Barthel,J. Solution Chem. 16, 871 (1987).

    Google Scholar 

  10. W. Kunz, P. Calmettes, and P. Turq,J. Chem. Phys. 92, 2367 (1990).

    Google Scholar 

  11. T. Cartailler, W. Kunz, P. Turq and M. C. Bellissent-Funel, submitted toJ. Phys.: Cond. Mat.

  12. A. N. Dey,Thin Solid Films 43, 131 (1977).

    Google Scholar 

  13. B. Salamito, P. Fries, private communication.

  14. J. Barthel and R. Neueder,GIT Fachz. Lab. 28, 1002 (1984).

    Google Scholar 

  15. W. Kunz, P. Turq, and J. Barthel,Ann. Phys. Fr. 15, 447 (1990).

    Google Scholar 

  16. K. S. Pitzer in R. M. Pytkowicz (ed.),Activity Coefficients in Electrolyte Soltions, CRC Press, Boca Raton (1979).

    Google Scholar 

  17. O. Kratky, H. Leopold, and H. Stabinger,Z. Angew. Phys. 27, 273 (1969).

    Google Scholar 

  18. W. Kunz and J. Barthel,J. Solution Chem. 19, 339 (1990).

    Google Scholar 

  19. P. J. Rossky, J. B. Dudowicz, B. L. Tembe, and H. L. Friedman,J. Chem. Phys. 73, 3372 (1980).

    Google Scholar 

  20. P. Turq, F. Lantelme, and H. L. Friedman,J. Chem. Phys. 66, 3039 (1977).

    Google Scholar 

  21. P. Turq, F. Lantelme, and D. Levesque,Mol. Phys. 37, 223 (1979).

    Google Scholar 

  22. W. J. Helwe, L. Radom, P.v.R. Schleyer, and J. A. Pople,Ab Initio Molecular Orbital Theory, (Wiley, New York, 1986).

    Google Scholar 

  23. M. J. S. Dewar and D. J. Nelson,J. Org. Chem. 47, 2614 (1982).

    Google Scholar 

  24. T. Clark,A Handbook of Computational Chemistry, (Wiley, New York, 1985).

    Google Scholar 

  25. A. Kratochwill, J. U. Weidner, and H. Zimmermann,Ber. Bunsenges. Phys. Chem. 77, 408 (1973).

    Google Scholar 

  26. S. Huzinaga,Gaussian Basis Sets for Molecular Calculations, (Elsevier, Amsterdam, 1984).

    Google Scholar 

  27. C. Møller and M. S. Plesset,Phys. Rev. 46, 618 (1934).

    Google Scholar 

  28. R. V. Moshtev and P. Zlatilova,Electrochim. Acta 28, 1107 (1982).

    Google Scholar 

  29. A. E. Read and F. Weinhold,J. Chem. Phys. 83, 173 (1985).

    Google Scholar 

  30. A. E. Read, R. B. Weinstock and F. Weinhold,J. Chem. Phys. 83, 735 (1985).

    Google Scholar 

  31. L. Belloni,J. Chem. Phys. 88, 5143 (1988).

    Google Scholar 

  32. M. Kleebauer, PhD Thesis, Regensburg (Germany), 1988.

  33. B. S. Krumgalz,J. Chem. Soc., Faraday Trans. 1 79, 571 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunz, W., Barthel, J., Klein, L. et al. Lithium bromide in acetonitrile: Thermodynamics, theory, and simulation. J Solution Chem 20, 875–891 (1991). https://doi.org/10.1007/BF01074950

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01074950

Key words

Navigation