Skip to main content
Log in

Optimal tumor targeting by antibodies: Development of a mathematical model

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A mathematical model has been developed to optimize tumor targeting with labeled antibodies. The model is compartmental and nonlinear, incorporating saturable binding. Published parameter values have been used in the model, and the resulting stiff differential equations have been solved using FACSIMILE, a computer package that can simulate very stiff differential systems. Results show that successful tumor targeting depends on an optimal combination of antibody dose, affinity, and molecular size. The model has allowed an assessment to be made of the complicated and interrelated dynamic relationships that these factors have on tumor targeting. It has also offered an explanation for previously unsatisfactory results from tumor targeting with labeled antibodies. The structural identifiability of the model parameters is also analyzed and it is shown that, with the prior knowledge of some parameters which is likely in practice, the remaining model parameters are uniquely identifiable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Dykes, A. R. Bradwell, C. E. Chapman, and A. T. M. Vaughan. Radioimmunotherapy of cancer: Clinical studies and limiting factors.Cancer Treat. Rev. 14:87–106 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. A. A. Epenetos, D. Snook, H. Durbin, P. M. Johnson, and J. J. Taylor-Papadimitriou. Limitations of radiolabelled monoclonal antibodies for localisation of human neoplasms.Cancer Res. 46:3183–3191 (1986).

    CAS  PubMed  Google Scholar 

  3. C. H. J. Ford and A. G. Casson. Antibody-mediated targeting in the treatment and diagnosis of cancer: An overview.Cancer Chemother. Pharmacol. 17:197–208 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. A. A. Epenetos, C. C. Nimmon, J. Arklie, A. T. Elliott, L. A. Hawkins, R. W. Knowles, K. E. Britton, and W. F. Bodmer. Detection of human cancer in an animal model using radiolabelled tumour-associated monoclonal antibodies.Br. J. Cancer 46:1–8 (1982).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. A. M. Keenan, D. Colcher, S. M. Larson, and J. Scholm. Radioimmunoscintigraphy of human colon cancer xenografts in mice with radioiodonated monoclonal antibody B72.3.J. Nucl. Med. 25:1197–1203 (1984).

    CAS  PubMed  Google Scholar 

  6. D. A. Scheinberg and M. Strand. Leukaemic cell targeting and therapy by monoclonal antibody in a mouse model system.Cancer Res. 42:44–49 (1982).

    CAS  PubMed  Google Scholar 

  7. L. T. Baxter and R. K. Jain. Transport of fluid and macromolecules in tumours. 1-Role of interstitial pressure and convection.Microvas. Res. 37:77–104 (1989).

    Article  CAS  Google Scholar 

  8. B. Ballou, J. Reiland, G. Levine, B. Knowles, and T. R. Hakala. Tumour localisation using F(ab′)2μ from a monoclonal IgM antibody: pharmacokinetics.J. Nucl. Med. 26:283–292 (1985).

    CAS  PubMed  Google Scholar 

  9. J. A. Carrasquillo, P. G. Abrams, R. W. Schroff, J. C. Reynolds, C. S. Woodhouse, A. C. Morgan, A. M. Keenan, K. A. Foon, P. Perentis, S. Marshall, M. Horowitz, J. Szymendera, J. Englert, R. K. Oldham, and S. M. Larson. Effect of antibody dose on the imaging and biodistribution of Indium-111 9.2.27 anti-melanoma monoclonal antibody.J. Nucl. Med. 29:39–47 (1988).

    CAS  PubMed  Google Scholar 

  10. R. M. Sharkey, F. J. Primus, and D. M. Goldenberg. Antibody protein dose and radio-immunodetection of GW-39 human colon tumour xenographs.Int. J. Cancer 39:611–617 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. B. A. Brown, R. D. Comeau, P. L. Jones, F. A. Liberatore, W. P. Neacy, H. Sands, and B. H. Gallagher. Pharmacokinetics of the monoclonal antibody B72.3 and its fragments labeled with either125I or111In.Cancer Res. 47:1149–1154 (1987).

    CAS  PubMed  Google Scholar 

  12. F. Searle, T. Adam, and J. A. Boden. Distribution of intact and Fab2 fragments of anti-human chorionic gonadotrophin antibodies in nude mice bearing human choriocarcinoma xenografts.Cancer Immunol. Immunother. 21:205–208 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. R. M. Sharkey, F. J. Primus, D. Sochat, and D. M. Goldenberg. Comparison of tumour targeting of mouse monoclonal and goat polyclonal antibodies to carcinembryonic antigen in the GW-39 human tumour-hamster host model.Cancer Res. 48:1823–1828 (1988).

    CAS  PubMed  Google Scholar 

  14. J. N. Weinstein, D. G. Covell, J. Barbet, R. R. Eger, O. D. Holton, M. J. Talley, R. P. Parker, and C. D. V. Black. Local and cellular factors in the pharmacology of monoclonal antibodies. In B. Bonavida and R. J. Collier (eds.),Membrane Mediated Cytotoxicity, Alan R. Liss, New York, 1987, pp. 279–289.

    Google Scholar 

  15. C. W. Gear.Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall Series in Automatic Computation), Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  16. R. L. Dedrick, D. S. Zaharko, R. A. Bender, W. A. Bleyer, and R. J. Lutz. Pharmacokinetic considerations on resistance to anti-cancer drugs.Cancer Ther. Rep. (Part 1, No. 4) 59:795–804 (1975).

    CAS  Google Scholar 

  17. J. J. DiStefano III and R. F. Chang. Computer simulation of thyroid hormone binding, distribution and disposal dynamics in man.Am. J. Physiol 221:1529–1544 (1971).

    CAS  PubMed  Google Scholar 

  18. K. R. Godfrey and J. J. DiStefano III. Identifiability of model parameters. In E. Walter (ed.),Identifiability of Parametric Models, Pergamon, Oxford, 1987, pp. 1–20.

    Google Scholar 

  19. H. Ishikawa, T. Maeda, H. Hikita, and K. Miyatake. The computerised derivation of rate equations for enzyme reactions on the basis of the pseudo-steady-state assumption and the rapid equilibrium assumption.Biochem. J. 251:175–181 (1988).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. K. Koizumi, G. L. DeNardo, S. J. DeNardo, M. T. Hays, H. H. Hines, P. O. Scheibe, J-S. Peng, D-J. Macey, N. Tonami, and K. Hisada. Mutticompartmental analysis of the kinetics of radioiodinated monoclonal antibody in patients with cancer.J. Nucl. Med. 27:1243–1254 (1986).

    CAS  PubMed  Google Scholar 

  21. D. G. Covell, J. Barbet, O. D. Holton, C. D. V. Black, R. J. Parker, and J. N. Weinstein. Pharmacokinetics of monoclonal immunoglobin G1, F(ab′)2 and Fab′ in mice.Cancer Res. 46:3969–3978 (1986).

    CAS  PubMed  Google Scholar 

  22. R. R. Eger, D. G. Covell, J. A. Carrasquillo, P. G. Abrams, K. A. Foon, J. C. Reynolds, R. W. Schroff, A. C. Morgan, S. M. Larson, and J. N. Weinstein. Kinetic model for the biodistribution of an111In-labeled monoclonal antibody in humans.Cancer Res. 47:3328–3336 (1987).

    CAS  PubMed  Google Scholar 

  23. B. R. Zeeburg and H. N. Wagner, Jr.. Analysis of 3- and 4-compartment models for in vivo radioligand-neuroreceptor interaction.Bull. Math. Biol. 49:469–486 (1987).

    Google Scholar 

  24. A. R. Curtis and W. P. Sweetenham.FACSIMILE/CHEKMAT Users' Manual, Harwell Laboratory Report (AERE 12805), 1987.

  25. K. R. Godfrey.Compartimental Models and Their Application, Academic Press, New York, 1983.

    Google Scholar 

  26. S. W. Benson.The Foundations of Chemical Kinetics (McGraw-Hill Series in Advanced Chemistry), McGraw-Hill, New York, 1960.

    Google Scholar 

  27. J. A. Jacquez.Compartmental Analysis in Biology and Medicine, University of Michigan Press, Ann Arbor, 1985.

    Google Scholar 

  28. S. I. Rubinow. Mathematical problems in the biological sciences.Regional Conference Series in Applied Mathematics, Vol. 10, Society for Industrial and Applied Mathematics, Philadelphia, 1973.

    Google Scholar 

  29. G. D. Thomas, M. J. Chappell, P. W. Dykes, D. B. Ramsden, K. R. Godfrey, J. R. M. Ellis, and A. R. Bradwell. Effect of dose, molecular size, affinity and protein binding on tumor uptake of antibody or ligand: a biomathematical model.Cancer Res. 49:3290–3296 (1989).

    CAS  PubMed  Google Scholar 

  30. A. E. Taylor and D. N. Granger. Exchange of macromolecules across the microcirculation. InHandbook of Physiology, 4th ed., Section 2, Vol. 4, Part 1, pp. 467–520, Waverley Press, Baltimore, MD, 1984.

    Google Scholar 

  31. S. O. Fatunla.Numerical Methods for Initial Value Problems in Ordinary Differential Equations, Academic Press, New York, 1988.

    Google Scholar 

  32. L. F. Shampine and C. W. Gear. A user's view of solving stiff differential equationsSIAM Rev. 21:1–17 (1979).

    Article  Google Scholar 

  33. Advanced Continuous Simulation Language (ACSL) Reference Manual, Mitchell and Gauthier Associates, Concord, MA, 1986.

  34. SAS/GRAPH Version 5 Users' Manual, SAS Institute, Cary, NC, 1985.

  35. K. R. Godfrey and W. R. Fitch. The deterministic identifiability of nonlinear pharmacokinetic models.J. Pharmacokin. Biopharm. 12:177–191 (1984).

    Article  CAS  Google Scholar 

  36. S. M. Larson, J. A. Carrasquillo, K. A. Krohn, J. Brown, R. W. McGuffin, J. M. Ferens, M. M. Graham, L. D. Hill, P. L. Beaumier, and I. Hellstrom. Localisation of131I-Labeled p97-specific Fab fragments in human melanoma as a basis for radiotherapy.J. Clin. Invest. 72:2101–2114 (1983).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. A. J. McEwan, B. Shapiro, J. C. Sissou, W. H. Birwaltes, and D. M. Ackery. Radioiodobenzylguanidine for the scintigraphic location and therapy of adrenergic tumours.Semin. Nucl. Med. 15:132–153 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. H. Pohjanpalo. System identifiability based on the power series expansion of the solution.Math. Biosci. 41:21–33 (1978).

    Article  Google Scholar 

  39. S. Wolfram.SMP: User's Manual Version 1.5.0., Inference Corp., 53000 West Century Building, Los Angeles, 1983.

    Google Scholar 

  40. M. J. Chappell, K. R. Godfrey, and S. Vajda. Global identifiability of the parameters of nonlinear models with specified inputs: a comparison of methods.Math. Biosci. 102:41–73 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. M. J. Chappell and K. R. Godfrey. Identifiability of a model developed for optimal tumour targeting by antibodies: the application of a symbolic manipulation package.University of Warwick, Control and Instrument Systems Centre, Report No. 5 (1989).

  42. D. G. Garlick and E. M. Renkin. Transport of large molecules from plasma to interstitial fluid and lymph in dogs.Am. J. Physiol. 219:1595–1605 (1970).

    CAS  PubMed  Google Scholar 

  43. R. M. Watt, J. M. Herron, and E. W. Voss. First order dissociation rates between a subpopulation of high-affinity rabbit anti-fluorescyl IgG antibody and homologous ligand.Mol. Immunol. 17:1237–1243 (1988).

    Article  Google Scholar 

  44. E. P. Krenning, W. A. P. Breeman, P. P. M. Kooij, J. S. Lameris, W. H. Bakker, J. W. Koper, L. Ausema, J. C. Reubi, and S. W. J. Lamberts. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin: Preliminary Communication.Lancet No. 8632:242–244 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chappell, M.J., Thomas, G.D., Godfrey, K.R. et al. Optimal tumor targeting by antibodies: Development of a mathematical model. Journal of Pharmacokinetics and Biopharmaceutics 19, 227–260 (1991). https://doi.org/10.1007/BF01073870

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01073870

Key words

Navigation