Skip to main content
Log in

A nonlinear physiologic pharmacokinetic model: I. Steady-state

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The two-compartment model of Rowland et al.,(2) has been extended by replacing first order elimination with Michaelis-Menten elimination kinetics. All of the equations for steady-state concentrations and clearances for zero order (constant rate) input orally (into compartment #2) and intravenously (into compartment #1) are derived and reported. The steady-state concentration in compartment #1, following intravenous administration, is shown to be a nonlinear function of maximal velocity of metabolism, Vm,the Michaelis constant, Km,and liver blood flow, Q;and, following oral administration is dependent only upon Vm and Km and is independent of Q.However, oral bioavailability is a function of Vm, Km,and Q.The model allows physiologic pharmacokinetic interpretation of both linear and nonlinear data; and, together with simple modification of the model, can explain much observed pharmacokinetic data to date particularly for first-pass drugs. Future articles in the series will be concerned with single doses, evaluation of literature data in terms of the model, application of the theory in toxicology and in clinical pharmacokinetics and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rowland. Influence of route of administration on drug availability.J. Pharm. Sci. 67:70–74 (1972).

    Article  Google Scholar 

  2. M. Rowland, L. Z. Benet, and E. G. Graham. Clearance concepts in pharmacokinetics.J. Pharmacokinet. Biopharm. 1:123–136 (1973).

    Article  CAS  PubMed  Google Scholar 

  3. G. R. Wilkinson and D. G. Shand. A physiological approach to hepatic drug clearance.Clin. Pharmacol. Ther. 18:377–390 (1975).

    CAS  PubMed  Google Scholar 

  4. D. G. Shand, D. M. Kornhauser, and G. R. Wilkinson. Effects of route of administration and blood flow on hepatic drug elimination.J. Pharmacol. Exp. Ther. 195:424–432 (1975).

    CAS  PubMed  Google Scholar 

  5. K. S. Pang and M. Rowland. Hepatic clearance of drugs I. Theoretical consideration of a “well-stirred” model and a “parallel-tube” model. Influence of heptatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokinet. Biopharm. 5:625–653 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. K. S. Pang and M. Rowland. Hepatic clearance of drugs II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel-tube” model using lodocaine in the perfused rat liverin situ preparation.J. Pharmacokinet. Biopharm. 5:655–680 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. K. S. Pang and M. Rowland. Hepatic clearance of drugs III. Additional experimental evidence supporting the “well-stirred” model, using metabolite (MEGX) generated from lidocaine under varying hepatic blood flow rates and linear conditions in the perfused rat liverin situ preparation.J. Pharmacokinet. Biopharm. 5:681–699 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. G. R. Wilkinson, A. J. J. Wood, R. A. Branch, and D. G. Shand. Intrinsic hepatic clearance in cirrhosis.Gastroenterology 75:347–348 (1978).

    Google Scholar 

  9. K. S. Pang and J. R. Gillette. A theoretical examination of the effects of gut wall metabolism, hepatic elimination and enterohepatic cycling on estimates of bioavailability and hepatic blood flow.J. Pharmacokinet. Biopharm. 6:355–367 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. K. S. Pang. Hepatic clearances of drugs and metabolites.Trends in Pharmacological Sciences (June, 1980), pp. 247–251.

  11. A. B. Ahmad, P. N. Bennett, and M. Rowland. Models of hepatic drug clearance: discrimination between the “well-stirred” and “parallel-tube” models.J. Pharm. Pharmacol. 35:219–224 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. M. Rowland. Protein binding and drug clearance.Clin. Pharmacokinet. 9 (Suppl. 1):10–17 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. S. M. Pond and T. M. Tozer. First-pass elimination: Basic concepts and clinical consequences.Clin. pharmacokinet. 9:1–25 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. L. Bass, S. Keiding, K. Winkler, and N. Tygstrup. Enzymatic elimination of substrates flowing through the intact liver.J. Theor. Biol. 61: 393–409 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. S. Keiding, S. Johanson, K. Winkler, K. Tønnesen, and M. Tygstrup. Michaelis-Menten kinetics of the galactose elimination by the isolated perfused pig liver.Am. J. Physiol. 230:1302–1313 (1976).

    CAS  PubMed  Google Scholar 

  16. L. Bass and J. I. Bracken. Time dependent elimination of substrates flowing through the liver and kidney.J. Theor. Biol. 67:637–652 (1977).

    Article  CAS  PubMed  Google Scholar 

  17. S. Keiding and E. Chiarantini. Effect of sinusoidal perfusion on galactose elimination kinetics in perfused rat liver.J. Pharmacol. Exp. Ther. 177:246–255 (1978).

    Google Scholar 

  18. L. Bass and A. J. Brackan. Hepatic elimination of flowing substrates: The distributed model.J. Theor. Biol. 72:161–184 (1978).

    Article  CAS  PubMed  Google Scholar 

  19. L. Bass. Current models of hepatic elimination.Gastroenterology 76:1504–1505 (1979).

    CAS  PubMed  Google Scholar 

  20. L. Bass and P. Robinson. Applied mathematics Reprint No. 110, Dept. of Mathematics, University of Queensland, Brisbane, Australia, 1979.

    Google Scholar 

  21. L. Bass and P. Robinson. How small is the functional variability of liver sinusoids?J. Theor. Biol. 81:761–769 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. L. Bass. On the location of cellular functions in perfused organs.J. Theor. Biol. 82:347–351 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. L. Bass. Flow dependence of first order uptake of substances by heterogeneous perfused organs.J. Theor. Biol. 86:365–376 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. S. Johansen and S. Keiding. A family of models for the elimination of substrate in the liver. Reprint No. 4, Institute of Mathematical Statistics, University of Copenhagen, Copenhagen, Denmark, 1980.

    Google Scholar 

  25. L. Bass and K. Winkler. A method of determining intrinsic hepatic clearance from the first-pass effect.Clin. Exp. Pharmacol. Physiol. 7:339–343 (1980).

    Article  CAS  PubMed  Google Scholar 

  26. L. Bass and P. J. Robinson. Effects of capillary heterogeneity on rates of steady uptake of substances by the intact liver.Microvasc. Res. 22:43–57 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. L. Bass. Functional zones in rat liver: The degree of overlap.J. Theor. Biol. 89:303–319 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. E. Bechgaard, S. Keiding, J. Lund, and L. A. Christiensen. Hepatic elimination of femoxetine in pig.Acta Pharmacol. Toxicol. 52:1–7 (1983).

    Article  CAS  Google Scholar 

  29. S. Keiding, H. Mengel, and J. Lund. Hepatic elimination of femoxetine in pig during intravenous infusion.Acta Pharmacol. et Toxicol. 52:234–237 (1983).

    Article  CAS  Google Scholar 

  30. J. G. Wagner, G. J. Szpunar, and J. J. Ferry. Commentary: Exact mathematical equivalence of the venous equilibration (“well-stirred”) model, the sinusoidal perfusion (“parallel-tube”) model and a specific two compartment open model.Drug Metab. Dispos. 12:385–388 (1984).

    CAS  PubMed  Google Scholar 

  31. J. G. Wagner. Comparison of nonlinear pharmacokinetic parameters estimated from the sinusoidal perfusion and venous equilibration models.Biopharm. Drug Dispos., in press, (1985).

  32. G. T. Tucker. Principles of pharmacokinetics.Therapeutic Drug Monitoring, Churchill Livingstone, New York, 1981, Chap. 3, pp. 31–53.

    Google Scholar 

  33. R. L. Dedrick and D. D. Forrester. Blood flow limitations in interpreting Michaelis constants for ethanol oxidationin vivo.Biochem. Pharmacol. 22:1133–1140 (1973).

    Article  CAS  PubMed  Google Scholar 

  34. D. Perrier and M. Gibaldi. Clearance and biologic half-life as indices of intrinsic hepatic metabolism.J. Pharmacol. Exp. Ther. 191:17–24 (1974).

    CAS  PubMed  Google Scholar 

  35. J. M. Strong, J. S. Dutcher, W. K. Lee, and A. J. Atkinson. Pharmacokinetics in man of theN-acetylated metabolite of procainamide.J. Pharmacokinet. Biopharm. 3:223–235 (1975).

    Article  CAS  PubMed  Google Scholar 

  36. R. J. Sawchuk and J. S. Rector. Steady-state plasma concentrations as a function of the absorption rate and dosing interval for drugs exhibiting concentration-dependent clearance: consequences for phenytoin therapy.J. Pharmacokinet. Biopharm. 7:543–555 (1979).

    Article  CAS  PubMed  Google Scholar 

  37. J. G. Wagner. A safe method of rapidly achieving plasma concentration plateaus.Clin. Pharmacol. Ther. 16:691–700 (1974).

    CAS  PubMed  Google Scholar 

  38. J. G. Wagner. Predictability of verapamil steady-state plasma levels from single-dose data explained.Clin. Pharmacol. Ther. 36:1–4 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. G. M. Wilkinson. Statistical estimation in enzyme kinetics.Biochem. J. 80:324–332 (1961).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. G. Levy and A. Yacobi. Effect of plasma protein binding on elimination of warfarin.J. Pharm. Sci. 63:805–806 (1974).

    Article  CAS  PubMed  Google Scholar 

  41. S. B. Freedman, D. R. Richmond, J. J. Ashely, and D. T. Kelly. Verapamil kinetics in normal subjects and patients with coronary artery spasm.Clin. Pharmacol. Ther. 30:644–652 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. A. J. Sedman and J. G. Wagner. Quantitative pooling of Michaelis-Menten equations in models with parallel metabolite formation paths.J. Pharmacokinet. Biopharm. 2:149–160 (1974).

    Article  CAS  PubMed  Google Scholar 

  43. J. G. Wagner.Fundamentals of Clinical Pharmacokinetics, 1st ed., Drug Intelligence Publications, Inc., Hamilton, IL, 1975, pp. 265–267.

    Google Scholar 

  44. J. G. Wagner, P. K. Wilkinson, A. J. Sedman, D. R. Kay, and D. J. Winkler. Elimination of alcohol from human blood.J. Pharm. Sci. 65:152–154 (1976).

    Article  CAS  PubMed  Google Scholar 

  45. P. K. Wilkinson, A. J. Sedman, E. Sakmar, D. R. Kay, and J. G. Wagner. Pharmacokinetics of ethanol after oral administration in the fasting state.J. Pharmacokinet. Biopharm. 5:207–229 (1977).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, J.G., Szpunar, G.J. & Ferry, J.J. A nonlinear physiologic pharmacokinetic model: I. Steady-state. Journal of Pharmacokinetics and Biopharmaceutics 13, 73–92 (1985). https://doi.org/10.1007/BF01073657

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01073657

Key words

Navigation