Skip to main content
Log in

Primary afferent depolarization in the spinal cord mechanisms and functions

  • Review
  • Published:
Neurophysiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. K. V. Baev, "Depolarization of different groups of lumber afferent terminals during fictitious scratching," Neirofiziologiya,11, No. 6, 569 (1979).

    Google Scholar 

  2. K. V. Baev, Yu. V. Panchin, and R. N. Skryma, "Depolarization of primary afferents during fictitious scratching in thalamic cats," Neirofiziologiya,10, No. 2, 173 (1978).

    Google Scholar 

  3. K. V. Baev, "Periodic changes in primary afferent depolarization during fictitious locomotion by thalamic cats," Neirofiziologiya,10, No. 4, 428 (1978).

    Google Scholar 

  4. K. V. Baev, "Polarization of primary afferent terminals in the lumbar spinal cord during fictitious locomotion," Neirofiziologiya,12, No. 5, 481 (1980).

    Google Scholar 

  5. N. V. Veber, I. M. Rodionov, and M. L. Shik, "‘Escape’ of the spinal cord from supraspinal influences," Biofizika,10, No. 2, 334 (1965).

    Google Scholar 

  6. D. S. Vorontsov, "Different types of electrotonic responses of spinal roots in frogs," in: Problems in Modern Physiology of the Nervous and Muscular Systems [in Russian], Tbilisi (1956), pp. 31–42.

  7. S. D. Kovtun, "Effect of impulses from pyramidal pathways on electrical responses of spinal roots in the cat," Trudy Inst. Fiziol. Zhivot. Kiev. Gos. Univ.,8, 169 (1954).

    Google Scholar 

  8. L. P. Latash, Electrical Phenomena in the Spinal Cord [in Russian], Medgiz, Moscow (1962).

    Google Scholar 

  9. A. V. Ovsyannikov and T. M. Kiseleva, "The state of interneurons of presynaptic inhibition during movement performance in man," in: Physiological Basis of Movement Control [in Russian], Moscow (1980), pp. 18–23.

  10. R. S. Person, L. P. Kudina, and T. Kh. Khuskivadze, "Role of presynaptic inhibition in control of the monosynaptic reflex from Ia fibers in man," in: Proceedings of the 8th All-Union Conference on Electrophysiology of the Central Nervous System (Erevan, June 3–6, 1980) [in Russian], Erevan (1980), pp. 18–19.

  11. Yu. S. Sverdlov and S. N. Kozhechkin, "Effect of glycine and gamma-aminobutyric acid on excitability of central terminals of primary afferent fibers," Neirofiziologiya,7, No. 4, 388 (1975).

    Google Scholar 

  12. S. I. Frankshtein, "Presynaptic inhibition and facilitation," in: Integrative Activity of the Nervous System Under Normal and Pathological Conditions [in Russian], Moscow (1968), pp. 98–129.

  13. B. I. Khodorov, The Problem of Excitability [in Russian], Meditsina, Leningrad (1969).

    Google Scholar 

  14. B. I. Shiryaev, "Synaptic effects in primary afferent fibers of the isolated frog spinal cord," in: Proceedings of the 8th All-Union Conference on Electrophysiology of the Central Nervous System (Erevan, June 3–6, 1980) [in Russian], Erevan (1980), pp. 21–22.

  15. P. Andersen, J. C. Eccles, and T. A. Sears, "Presynaptic inhibitory action of cerebral cortex on the spinal cord," Nature,194, 740 (1962).

    Google Scholar 

  16. P. Andersen, J. C. Eccles, and T. A. Sears, "Cortically evoked depolarization of primary afferent fibers in the spinal cord," J. Neurophysiol.,27, No. 1, 63 (1964).

    Google Scholar 

  17. J. Azami, J. E. Davies, and M. H. T. Roberts, "Primary afferent depolarization evoked from stimulation of brain stem raphe nuclei in the rat," J. Physiol. (London),293, 54P (1978).

  18. R. P. Barber, J. E. Vaughn, K. Saito, et al., "GABA-ergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord," Brain Res.,141, No. 1, 35 (1978).

    Google Scholar 

  19. J. L. Barker, R. A. Nicoll, and A. Padjen, "Studies on convulsants in the isolated frog spinal cord. 2. Effects on root potential," J. Physiol. (London),245, No. 3, 537 (1975).

    Google Scholar 

  20. C. D. Barnes and O. Pompeiano, "The contribution of the medial and lateral vestibular nuclei to presynaptic and postsynaptic effects produced in the lumbar cord by vestibular volleys," Pflügers Arch.,317, No. 1, 1 (1970).

    Google Scholar 

  21. D. H. Barron, and B. H. C. Matthews, "The interpretation of potential changes in the spinal cord," J. Physiol. (London),92, No. 2, 276 (1938).

    Google Scholar 

  22. K. V. Baev (K. V. Bayev) and P. G. Kostyuk, "Primary afferent depolarization evoked by the activity of the spinal scratching generator," Neuroscience,6, No. 2, 205 (1981).

    Google Scholar 

  23. S. J. Berger, J. G. Carter, and O. H. Lowry, "The distribution of glycine, GABA, glutamate and aspartate in rabbit spinal cord, cerebellum and hippocampus," J. Neurochem.,28, No. 1, 149 (1977).

    Google Scholar 

  24. D. A. Brown, P. R. Adams, A. J. Higgins, and S. March, "Distribution of GABA-receptors in the mammalian nervous system," J. Physiol. (London),75, No. 6, 667 (1979).

    Google Scholar 

  25. A. G. Brown and S. March, "GABA-receptors in mammalian peripheral nerve trunks," Brain Res.,156, No. 1, 187 (1978).

    Google Scholar 

  26. G. ten Bruggencate, H. D. Lux, and L. Liebl, "Possible relationship between extracellular potassium activity and presynaptic inhibition in the spinal cord of the cat," Pflügers Arch.,349, No. 2, 301 (1974).

    Google Scholar 

  27. A. Cangiano, W. A. Cook, and O. Pompeiano, "Primary afferent depolarization in the lumbar cord evoked from the fastigal nucleus," Arch. Ital. Biol.,107, No. 2, 321 (1969).

    Google Scholar 

  28. D. Carpenter, A. Lundberg, and U. Norsell, "Primary afferent depolarization evoked from the sensorimotor cortex," Acta Physiol. Scand.,59, No. 1/2, 126 (1963).

    Google Scholar 

  29. S. H. H. Chan and C. D. Barnes, "Presynaptic facilitation: positive dorsal root potentials evoked from brain stem reticular formation in lumber cord," Brain Res.,28, No. 1, 176 (1971).

    Google Scholar 

  30. S. Conradi, "On motoneuron synaptology in adult cats," Acta Physiol. Scand.,332, Suppl., 85 (1969).

    Google Scholar 

  31. W. A. Cook, A. Cangiano, and O. Pompeiano, "Vestibular influences on primary afferents in the spinal cord," Pflügers Arch.,299, No. 4, 334 (1968).

    Google Scholar 

  32. D. R. Curtis, J. C. Bornstein, and D. Lodge, "In vivo analysis of GABA receptors on primary afferent terminations in the cat," Brain Res.,194, No. 2, 255 (1980).

    Google Scholar 

  33. D. R. Curtis, D. Lodge, and S. J. Brand, "GABA and spinal afferent terminals excitability in the cat," Brain Res.,130, No. 3, 360 (1977).

    Google Scholar 

  34. E. E. Decima and L. J. Goldberg, "Centrifugal dorsal root discharges induced by motoneurone activation," J. Physiol. (London),207, No. 1, 103 (1970).

    Google Scholar 

  35. M. Deschenes, P. Feltz, and Y. Lamour, "A model for an estimate in vivo of the ionic basis of presynaptic inhibition: an intracellular analysis of GABA-induced depolarization in rat dorsal root ganglia," Brain Res.,118, No. 3, 486 (1976).

    Google Scholar 

  36. M. S. Devanandan, R. M. Eccles, and D. Stenhouse, "Presynaptic inhibition evoked by muscle contraction," J. Physiol. (London),185, No. 2, 471 (1966).

    Google Scholar 

  37. M. S. Devanandan, R. M. Eccles, and T. Yakota, "Depolarization of afferent terminals evoked by muscle stretch," J. Physiol. (London),179, No. 3, 417 (1965).

    Google Scholar 

  38. M. S. Devanandan, R. M. Eccles, and T. Yokota, "Muscle stretch and the presynaptic inhibition of the group Ia pathway to motoneurones," J. Physiol. (London),179, No. 3, 430 (1965).

    Google Scholar 

  39. M. S. Devanandan, B. Holmqvist, and T. Yokota, "Presynaptic depolarization of group I muscle afferents by contralateral afferent volleys," Acta Physiol. Scand.,63, No. 1, 46 (1965).

    Google Scholar 

  40. K. Dunlap and G. D. Fischbach, "Neurotransmitters decrease the calcium component of sensory neurone potentials," Nature,276, 837 (1978).

    Google Scholar 

  41. J. C. Eccles, R. M. Eccles, and F. Magni, "Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys," J. Physiol. (London),159, No. 1, 147 (1961).

    Google Scholar 

  42. J. C. Eccles, P. G. Kostyuk, and R. F. Schmidt, "Central pathway responsible for depolarization of primary afferent fibres," J. Physiol. (London),161, No. 2, 237 (1962).

    Google Scholar 

  43. J. C. Eccles, P. G. Kostyuk, and R. F. Schmidt, "Presynaptic inhibition of the central actions of flexor reflex afferents," J. Physiol. (London),161, No. 2, 258 (1962).

    Google Scholar 

  44. J. C. Eccles, W. Kozak, and F. Magni, "Dorsal root reflexes of muscle group I afferent fibres," J. Physiol. (London),159, No. 1, 128 (1961).

    Google Scholar 

  45. J. C. Eccles, F. Magni, and W. D. Willis, "Depolarization of central terminals of group I afferent fibres from muscle," J. Physiol. (London),160, No. 1, 62 (1962).

    Google Scholar 

  46. J. C. Eccles, "Presynaptic and postsynaptic inhibitory actions in spinal cord," in: Brain Mechanisms (G. Moruzzi, ed.) Elsevier, Amsterdam (1963), pp. 1–22 (Progress in Brain Research, Vol. 1).

    Google Scholar 

  47. J. C. Eccles, R. F. Schmidt, and W. D. Willis, "Depolarization of central terminals of group Ib afferent fibres from muscle," J. Neurophysiol.,26, No. 1, 1 (1963).

    Google Scholar 

  48. J. C. Eccles, R. F. Schmidt, and W. D. Willis, "Depolarization of the central terminals of cutaneous afferent fibres," J. Neurophysiol.,26, No. 4, 646 (1963).

    Google Scholar 

  49. J. C. Eccles, R. F. Schmidt, and W. D. Willis, "Pharmacological studies of presynaptic inhibition," J. Physiol. (London),168, No. 3, 500 (1963).

    Google Scholar 

  50. R. M. Eccles, B. Holmqvist, and P. F. Voorhoeve, "Presynaptic inhibition from contralateral cutaneous afferent fibres," Acta Physiol. Scand.,62, No. 4, 464 (1964).

    Google Scholar 

  51. R. M. Eccles, B. Holmqvist, and P. E. Voorhoeve, "Presynaptic depolarization of cutaneous afferents by volleys in contralateral muscle afferents," Acta Physiol. Scand.,62, No. 4, 474 (1964).

    Google Scholar 

  52. E. Eide, I. Jurna, and A. Lundberg, "Conductance measurements from motoneurones during presynaptic inhibition," in: Structure and Function of Inhibitory Neuronal Mechanisms (C. von Euler et al., ed.), Pergamon Press, New York (1968), pp. 215–219.

    Google Scholar 

  53. R. N. Evans, "Evidence supporting the indirect depolarization of primary afferent terminals in the frog by excitatory amino acids," J. Physiol. (London),298, 25 (1980).

    Google Scholar 

  54. K. Frank, "Basic mechanisms of synaptic transmission in the central nervous system," I. R. E. Trans. Med. Electron, ME-6, 85 (1959).

    Google Scholar 

  55. K. Frank and M. G. F. Fuortes, "Presynaptic and postsynaptic inhibition of monosynaptic reflexes," Fed. Proc.,16, No. 1, 39 (1957).

    Google Scholar 

  56. J. P. Gallagher, H. Higashi, and S. Nishi, "Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones," J. Physiol. (London),275, 263 (1979).

    Google Scholar 

  57. H. S. Gasser and H. T. Graham, "Potentials produced in the spinal cord by stimulation of the dorsal roots," Am. J. Physiol.,103, No. 2, 303 (1933).

    Google Scholar 

  58. S. Glusman, M. Pacheco, D. McAdoo, and B. Haber, "Primary afferent depolarization. Distribution of the γ-aminobutyric acid system in frog spinal cord," Neurochem. Res.,5, No. 9, 1037 (1980).

    Google Scholar 

  59. S. Glusman and P. Rudomin, "Presynaptic modulation of synaptic effectiveness of afferent and ventrolateral tract fibers in the frog spinal cord," Exp. Neurol.,45, No. 3, 474 (1974).

    Google Scholar 

  60. G. Gmelin and A. Cerletti, "Electrophoretic studies on presynaptic inhibition in the mammalian spinal cord," Experientia,32, No. 6, 756 (1976).

    Google Scholar 

  61. L. T. Graham, R. P. Shank, R. Werman, and M. H. Aprison, "Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, γ-aminobutyric acid, glycine and glutamine," J. Neurochem.,14, No. 4, 465 (1967).

    Google Scholar 

  62. E. G. Gray, "A morphological basis for presynaptic inhibition?" Nature,193, 82 (1962).

    Google Scholar 

  63. E. G. Gray, "Electron microscopy of presynaptic organelles of the spinal cord," J. Anat.97, No. 1, 101 (1963).

    Google Scholar 

  64. A. D. Grinell, "Electrical interaction between antidromically stimulated frog motoneurones and dorsal root afferents: enhancement by gallamine and TEA," J. Physiol. (London),210, No. 1, 17 (1970).

    Google Scholar 

  65. Y. Grossman, M. E. Spira, and I. Parnas, "Differential flow of information into branches of a single axon," Brain Res.,63, 379 (1973).

    Google Scholar 

  66. S. Hagiwara and I. Tasaki, "A study on the mechanism of impulse transmission across the giant synapse of the squid," J. Physiol. (London),143, No. 1, 114 (1958).

    Google Scholar 

  67. A. van Harreveld and A. Niechaj, "A possibly monosynaptic component of the dorsal root potential," Brain Res.,19, No. 1, 105 (1970).

    Google Scholar 

  68. T. Hongo, E. Jankowska, and A. Lundberg, "The rubrospinal tract. 3. Effects on primary afferent terminals," Exp. Brain Res.,15, 39 (1972).

    Google Scholar 

  69. J. F. Iles and R. C. Roberts, "Presynaptic inhibition of monosynaptic reflexes from human soleus muscle," J. Physiol. (London),317, 59 (1981).

    Google Scholar 

  70. B. Katz and R. A. Miledi, "A study of synaptic transmission in the absence of nerve impulses," J. Physiol. (London),192, No. 2, 407 (1967).

    Google Scholar 

  71. B. Katz, "The transmission of impulses from nerve to muscle and the subcellular unit of synaptic action," Proc. Roy. Soc. B.,155, No. 3, 455 (1962).

    Google Scholar 

  72. K. Koketsu, "Intracellular potential changes of primary afferent nerve fibers in spinal cord of cats," J. Neurophysiol.,19, No. 5, 375 (1956).

    Google Scholar 

  73. N. Kŕiź, E. Syková, E. Ujec, and L. Vyklický, "Changes of extracellular potassium concentration induced by neuronal activity in the spinal cord of the cat," J. Physiol. (London),238, No. 1, 1 (1974).

    Google Scholar 

  74. N. Kŕiź, E. Syková, and L. Vyklický, "Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission," J. Physiol. (London),249, No. 1, 167 (1975).

    Google Scholar 

  75. K. Krnjević and M. E. Morris, "Correlation between extracellular focal potentials and K+ potentials evoked by primary afferent activity," Can. J. Physiol. Pharmacol.,53, No. 5, 912 (1975).

    Google Scholar 

  76. K. Krnjević and M. E. Morris, "Extracellular accumulation of K+ evoked stimulation of primary afferent fibers in the cuneate nucleus and dorsal horn of cat," Can. J. Physiol. Pharmacol.,52, No. 4, 852 (1974).

    Google Scholar 

  77. A. W. Liley, "The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction," J. Physiol. (London),134, No. 2, 427 (1956).

    Google Scholar 

  78. E. W. Lothman and G. G. Somjen, "Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord," J. Physiol. (London),252, No. 1, 115 (1975).

    Google Scholar 

  79. A. Lundberg and L. Vyklický, "Inhibitory interaction between spinal reflexes to primary afferents," Experientia,19, No. 2, 247 (1963).

    Google Scholar 

  80. R. F. Martin, L. H. Haber, and W. D. Willis, "Primary afferent depolarization of identified cutaneous stimulation in medial brain stem," J. Neurophysiol.42, No. 3, 779 (1979).

    Google Scholar 

  81. B. J. McLaughlin, R. Barber, K. Saito, et al., "Immunocytochemical localization of glutamate decarboxylase in rat spinal cord," J. Comp. Neurol.,164, No. 2, 305 (1975).

    Google Scholar 

  82. R. Melzak and P. Wall, "Pain mechanisms: a new theory," Science,150, 971 (1965).

    Google Scholar 

  83. L. M. Mendell and P. D. Wall, "Presynaptic hyperpolarization: a role for fine afferent fibres," J. Physiol. (London),172, No. 2, 274 (1964).

    Google Scholar 

  84. Y. Mijata and M. Otsuka, "Quantitative histochemistry of γ-aminobutyric acid in cat spinal cord with special reference of presynaptic inhibition," J. Neurochem.,25, No. 3, 239 (1975).

    Google Scholar 

  85. S. Mori and A. Matsumoto, "The effects of stimulation of nerves to neck muscle upon flexor reflex in the forelimb," Brain Res.,43, No. 2, 645 (1972).

    Google Scholar 

  86. R. A. Nicoll, "Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog," J. Physiol. (London),290, 113 (1979).

    Google Scholar 

  87. R. A. Nicoll, "The blockage of GABA mediated responses in the frog spinal cord by ammonium ions and furosemide," J. Physiol. (London),283, 121 (1978).

    Google Scholar 

  88. S. Nishi, S. Minota, and A. G. Karczmar, "Primary afferent neurones: the ionic mechanism of GABA-mediated depolarization," Neuropharmacology,13, No. 2, 215 (1974).

    Google Scholar 

  89. M. Otsuka and S. Konishi, "GABA in the spinal cord," in: GABA in Nervous System Function (E. Roberts, T. N. Chase, and D. B. Tower, eds.), Raven Press, New York (1976), pp. 197–201.

    Google Scholar 

  90. P. R. Preston and D. I. Wallis, "Extracellular potassium and dorsal root potentials in neonate rat," J. Physiol (London),306, 25P (1980).

  91. H. J. Ralston, "The structure of the substantia gelatinosa of the cat spinal cord," J. Physiol. (London),179, No. 1, 22P (1965).

  92. M. Réthelyi and J. Szentágothai, "The large synaptic complexes of the substantia gelatinosa," Exp. Brain Res.,7, No. 3, 258 (1969).

    Google Scholar 

  93. M. Réthelyi, "Ultrastructural synaptology of Clarke's column," Exp. Brain Res.,11, No. 2, 159 (1970).

    Google Scholar 

  94. J. Robbins and W. G. van der Kloot, "The effect of picrotoxin on peripheral inhibition in the crayfish," J. Physiol. (London),143, No. 3, 541 (1958).

    Google Scholar 

  95. P. Rudomin, I. Engberg, and I. Jimenez, "Mechanisms involved in presynaptic depolarization of group I and rubrospinal fibers in cat spinal cord," J. Neurophysiol.,46, No. 3, 532 (1981).

    Google Scholar 

  96. P. Rudomin, E. Jankowska, and J. Madrid, "Presynaptic depolarization of cortico-spinal and rubro-spinal arborizations produced by conditioning volleys to cutaneous nerves," Soc. Neorosci. Abstr.,4, No. 6, 571 (1978).

    Google Scholar 

  97. P. Rudomin and E. Jankowska, "Presynaptic depolarization of terminals of rubro-spinal tract fibers in intermediate nucleus of cat spinal cord," J. Neurophysiol,46, No. 3, 517 (1978).

    Google Scholar 

  98. R. W. Ryall, "Presynaptic inhibition," Trends Neurosci.,1, No. 1, 164 (1978).

    Google Scholar 

  99. K. Saito, "The synaptology and cytology of the Clark cell in nucleus dorsalis of the cat: an electron microscopic study," J. Neurocytol.,3, No. 2, 179 (1974).

    Google Scholar 

  100. B. R. Sastry, "γ-Aminobutyric acid and primary afferent depolarization in feline spinal cord," Can. J. Physiol. Pharmacol.,57, No. 10, 1157 (1979).

    Google Scholar 

  101. M. E. Scheibel and A. B. Scheibel, "Terminal patterns in cat spinal cord. 3. Primary afferent collaterals," Brain Res.,13, No. 3, 417 (1969).

    Google Scholar 

  102. R. F. Schmidt, "Control of the access of afferent activity to somatosensory pathways," in: Somatosensory System, (A. Iggo, ed.), Springer, Berlin (1973), pp. 151–206 (Handbook of Sensory Physiology, Vol. 11).

    Google Scholar 

  103. R. F. Schmidt, J. Senges, and M. Zimmermann, "Presynaptic depolarization of cutaneous mechanoreceptor afferents after mechanical skin stimulation," Exp. Brain Res.,3, No. 2, 234 (1967).

    Google Scholar 

  104. A. I. Shapovalov and B. I. Shiriaev, "Recurrent interaction between individual motoneurones and dorsal root fibres in the frog," Exp. Brain Res.,38, No. 1, 115 (1980).

    Google Scholar 

  105. S. A. Shefner and R. A. Levy, "Interaction between aminoacid induced and K+ induced depolarization of primary afferents in the bull-frog spinal cord," Can. J. Physiol. Pharmacol.,58, No. 11, 1286 (1980).

    Google Scholar 

  106. S. A. Shefner, "The contribution of changes in extracellular potassium to primary afferent depolarization," in: Ph. D. Thesis, Univ. Chicago, Chicago, Ill. (1979), 72 pp.

    Google Scholar 

  107. E. Syková, "K+ changes in the brain and spinal cord measured by ion-selective microelectrodes," Bioelectrochem. Bioenerg.,7, No. 2, 231 (1980).

    Google Scholar 

  108. E. Syková and R. K. Orkand, "Extracellular potassium accumulation and transmission in frog spinal cord," Neuroscience,5, No. 8, 1421 (1981).

    Google Scholar 

  109. E. Syková, B. Shirajev, N. Kŕiź, and L. Vyklický, "Accumulation of extracellular potassium in spinal cord of the frog," Brain Res.,106, No. 2, 413 (1976).

    Google Scholar 

  110. E. Syková and L. Vyklický, "Changes of extracellular potassium activity in isolated spinal cord of frog under high Mg++ concentration," Neurosci. Lett.,4, No. 1, 161 (1977).

    Google Scholar 

  111. G. Szekely and B. Kozaras, "Electron microscopic identification of postsynaptic dorsal root terminals: a possible substrate of dorsal root potentials in the frog spinal cord," Exp. Brain Res.,29, 3/4, 531 (1977).

    Google Scholar 

  112. J. A. Szentágothai, "A possible anatomical basis for descending control of impulse transmission through dorsal horn," in: Mechanisms of Descending Control of Spinal Cord Activity (P. G. Kostyuk, ed.), [in Russian], Nauka, Leningrad (1971), pp. 9–14.

    Google Scholar 

  113. A. Takeuchi and N. Takeuchi, "Electrical changes in pre- and postsynaptic axons of the giant synapse ofLoligo," J. Gen. Physiol.,45, No. 5, 1181 (1962).

    Google Scholar 

  114. F. Walberg, "Axo-axonic contacts in the cuneate nucleus: probable basis for presynaptic depolarization," Exp. Neurol.,13, No. 2, 218 (1965).

    Google Scholar 

  115. P. D. Wall, "Excitability changes in afferent fibre terminations and their relation to slow potentials," J. Physiol. (London),142, No. 1, 1 (1958).

    Google Scholar 

  116. P. D. Wall, "The origin of a spinal cord slow potential," J. Physiol. (London),164, No. 3, 508 (1962).

    Google Scholar 

  117. P. D. Wall, "The substantia gelatinosa. A gate control mechanism set across a sensory pathway," Trends Neurosci.,3, No. 9, 221 (1980).

    Google Scholar 

Download references

Authors

Additional information

A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 543–552, September–October, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marlinskii, V.V. Primary afferent depolarization in the spinal cord mechanisms and functions. Neurophysiology 14, 397–405 (1982). https://doi.org/10.1007/BF01073223

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01073223

Keywords

Navigation