Cybernetics

, Volume 20, Issue 5, pp 623–632 | Cite as

Analysis of tree algorithms. Vector codes. Generation of random structures and tree characteristics

  • A. P. Zavada
  • G. P. Kozhevnikova
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. P. Kozhevnikova, “On the automation of the analysis of computational complexity of algorithms,” Kibernetika, No. 5, 65 (1980).Google Scholar
  2. 2.
    A. P. Zavada and G. P. Kozhevnikova, “On certain problems of complexity analysis of algorithms,” Kibernetika, No. 6, 124 (1982).Google Scholar
  3. 3.
    Analysis of Computational Complexity of Algorithms [in Russian], Kiev (1979) (Preprint of the Institute of Cybernetics of the Academy of Sciences of the UkrSSR, No. 79-14).Google Scholar
  4. 4.
    G. P. Kozhenvikova and A. A. Stognii, “Representation of analytic expressions in the execution of symbolic transformations in computers,” Kibernetika, No. 4, 54 (1975).Google Scholar
  5. 5.
    A. P. Zavada and G. P. Kozhevnikova, “Analysis of computational complexity of one class of tree-equivalence recognition algorithms,” in: Design of Programming Systems [in Russian], Inst. Kibern. Akad. Nauk, UkrSSR, Kiev (1978), pp. 33–40.Google Scholar
  6. 6.
    G. P. Kozhevnikova, “Automation of complexity analysis of algorithms based on the TEKSAN system,” in: Programming Languages and Systems [in Russian], VTs Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1979), pp. 47–57.Google Scholar
  7. 7.
    F. Harary and E. Palmer, Graphical Numeration, Academic Press (1973).Google Scholar
  8. 8.
    D. Knuth, Art of Computer Programming, Vol. 1, Fundamental Algorithms., Addison-Wesley (1974).Google Scholar
  9. 9.
    D. Knuth, Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley (1973).Google Scholar
  10. 10.
    W. L. Mayers, “Linear representation of tree structure,” in: Conf. Rec. 3rd Annual ACM Symp. Theory Comput., New York (1971), pp. 50–62.Google Scholar
  11. 11.
    G. Meda and F. Paulget, “Description de graphes arborescents dans un calculateur,” Bull. Direction Etudes Rech.,13, No. 2, 27 (1967).Google Scholar
  12. 12.
    F. Ruskey and T. C. Hu, “Generating binary trees lexicographically,” SIAM J. Comput.,6, No. 4, 745 (1977).Google Scholar
  13. 13.
    A. P. Zavada, “Algorithm for generating random trees” in: Analysis of Computational Complexity of Algorithms [in Russian], Inst. Kibern. Akad. Nauk UkrSSR, Kiev (1979), pp. 14–19 (Preprint of the Institute of Cybernetics, Academy of Sciences of the Ukr. SSR, 79-14).Google Scholar
  14. 14.
    A. V. Kozina, “Encoding and generating nonisomorphic trees,” Kibernetika, No. 5, 38 (1979).Google Scholar
  15. 15.
    Z. Banaszak, “Kodawanie pradrzew metoda drog maksymalnych,” Prace Nauk Inst. Cybernet., No. 36, 3 (1977).Google Scholar
  16. 16.
    B. M. Abramov, “Trees and parenthetic algebras,” in: Computational Methods in Mechanical Engineering [in Russian], No. 2 (33), Minsk (1974), pp. 10–16.Google Scholar
  17. 17.
    F. Ya. Vetukhnovskii, “On estimating the number of plane groups,” Dokl. Akad. Nauk SSSR,142, No. 1, 50 (1962).Google Scholar
  18. 18.
    E. A. Dinits and M. A. Zaitsev, “Algorithms for generating nonisomorphic strees” Avtomat. Telemekh., No. 4, 121 (1977).Google Scholar
  19. 19.
    A. B. Vinokur and G. P. Kozhevnikova, “Analysis of algorithm efficiency using the ABC-1 analyzer,” in: Theoretical and System Programming [in Russian], Inst. Kibern. Akad. Nauk UkrSSR, Kiev (1979), pp. 56–66.Google Scholar
  20. 20.
    Hayaski Kenji, “Direct transformation between codes for planted trees,” TPU Math.,13, No. 1, 59 (1977).Google Scholar
  21. 21.
    K. B. Shakhbazyan and T. A. Tushkina, “Statistical efficiency of algorithms for solving one problem in partitioning the nodes of a graph,” Kibernetika, No. 5, 38 (1977).Google Scholar
  22. 22.
    R. Linknaitzky and W. J. Mayers, “Lowestbit encoding of plane trees,” in: Algorithms and Complexity. New and Recent Results. Proc. Symp. Carnegie-Mellon Univ. 1976, New York (1976).Google Scholar
  23. 23.
    G. P. Kozhevnikova, “Estimating the efficiency of symbolic transformation algorithms,” Upr. Sist. Mash., No. 1, 98 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • A. P. Zavada
  • G. P. Kozhevnikova

There are no affiliations available

Personalised recommendations