Skip to main content
Log in

Interlineation of functions of 2 variables on M (M≥2) lines with the highest algebraic precision

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

A general algorithm is proposed for constructing interlineation operators\(\bar O_{MN} f(x)\), x=(x1, x2) with the properties

$$\begin{array}{*{20}c} {\left. {\frac{{\partial ^s \bar O_{MN} f}}{{\partial v_k^s }}} \right|_{\Gamma _k } = \left. {\frac{{\partial ^s f}}{{\partial v_k^s }}} \right|_{\Gamma _k } = \left. {\varphi _{ks} (x)} \right|_{\Gamma _k } ,k = \overline {1,M;} s = \overline {0,N} ,} \\ {\bar O_{MN} x^\alpha \equiv x^\alpha ,0 \leqslant |\alpha | = \alpha _1 + \alpha _2 \leqslant M(N + 1) - 1, x^\alpha = x_1^{\alpha _1 } x_2^{\alpha _2 } ,} \\ \end{array}$$

where {γk} is a given set of lines of arbitrary disposition on the plane Ox1x2,Ν k ⊥ γk. An integral representation is derived of the residual of approximation of the function f(x) by the operators\(\bar O_{MN} f(x)\). Examples are considered of interlineation operators preserving the class Cr(R2), and also operators not preserving the differentiability class, to which the function f(x) belongs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. N. Litvin, “A formula of V. L. Rvachev in the case of domains with corner points,” Ukr. Mat. Zh.,24, No. 2, 238–244 (1972).

    Google Scholar 

  2. O. N. Litvin, “Polynomial Taylor interlineation of a function of 2 variables on several lines,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 19–27 (1989).

    Google Scholar 

  3. O. N. Litvin, “Interpolation of Cauchy data on several parallel lines in R2 preserving the differentiability class,” Ukr. Mat. Zh.,37, No. 4, 509–513 (1985).

    Google Scholar 

  4. O. N. Litvin, “Interlineation of functions of 2 variables on M (M>2) lines preserving the class Cr(R2),” Ukr. Mat. Zh.,42, No. 12, 1616–1625 (1990).

    Google Scholar 

  5. O. N. Litvin and V. V. Fed'ko, “Generalized piecewise-Hermite interpolation,” Ukr. Mat. Zh.,28, No. 6, 812–819 (1976).

    Google Scholar 

  6. H. Mettke, “Fehlerabschatzungen zur zweidimensionalen spline interpolation,” Beitr. Numer. Math., No. 11, 81–91 (1983).

    Google Scholar 

  7. N. P. Korneichuk, Splines in Approximation Theory [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  8. G. M. Nielson, D. H. Thomas, and J. A. Wixom, “Interpolation in triangles,” Bull. Austral. Math. Soc.,20, 115–130 (1979).

    Google Scholar 

  9. G. M. Nielson, “Blending method of minimum norm for triangular domains,” Rev. Roumaine Math. Pures Appl.,25, No. 6, 899–910 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 44, No. 11, pp. 1498–1504, November, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvin, O.N. Interlineation of functions of 2 variables on M (M≥2) lines with the highest algebraic precision. Ukr Math J 44, 1378–1384 (1992). https://doi.org/10.1007/BF01071511

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01071511

Keywords

Navigation