Advertisement

Journal of Pharmacokinetics and Biopharmaceutics

, Volume 17, Issue 5, pp 593–599 | Cite as

Determination of mean input time, mean residence time, and steady-state volume of distribution with multiple drug inputs

  • Nobutoshi Watari
  • Leslie Z. Benet
Article

Abstract

A general treatment for determination of mean residence time (MRTV)and steady-state volume of distribution (V ss )after multiple drug inputs via any mode of administration is presented. For multiple inputs, either simultaneous or consecutive, the mean input time (MIT)can be readily calculated using the general equations presented here. Sample calculations for (MIT, MRT),and V ss following different combinations of multiple drug inputs are presented. Errors inherent in noncompartmental area determinations are discussed.

Key words

mean input time steady-state volume of distribution mean residence time multiple dosing input noncompartmental model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Nakashima and L. Z. Benet. General treatment of mean residence time, clearance and volume parameters in linear mammillary models with elimination from any compartment.J. Pharmacokin. Biopharm. 16:475–492 (1988).CrossRefGoogle Scholar
  2. 2.
    L. Z. Benet and R. L. Galeazzi. Noncompartmental determination of the steady-state volume of distribution.J. Pharm. Sei. 68:1071–1074 (1979).CrossRefGoogle Scholar
  3. 3.
    C. S. Lee, D. C. Brater, J. G. Gambertoglio, and L. Z. Benet. Disposition kinetics of ethambutol in man.J. Pharmacokin. Biopharm. 8:335–346 (1980).CrossRefGoogle Scholar
  4. 4.
    D. Perrier and M. Mayersohn. Noncompartmental determination of the steady-state volume of distribution for any mode of administration.J. Pharm. Sci. 71:372–373 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    A. B. Straughn. Model-independent steady-state volume of distribution.J. Pharm. Sci. 71:597–598 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    Errata.J. Pharm. Sci. 71:1427–1428 (1982).Google Scholar
  7. 7.
    W. L. Hayton and P. Haefelfinger. Steady-state volume of distribution after multiple doses.J. Pharm. Sci. 74:1134 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Yamaoka, T. Nakagawa, and T. Uno. Statistical moments in pharmacokinetics.J. Pharmacokin. Biopharm. 6:547–558 (1978).CrossRefGoogle Scholar
  9. 9.
    L. Z. Benet. General treatment of linear mammillary models with elimination from any compartment as used in pharmacokinetics.J. Pharm. Sci. 61:536–541 (1972).PubMedCrossRefGoogle Scholar
  10. 10.
    N. A. Lassen and W. Perl.Tracer Kinetic Methods in Medical Physiology, Raven Press, New York, 1979, pp. 76–80.Google Scholar
  11. 11.
    E. Nakashima and L. Z. Benet. An integrated approach to noncompartmental pharmacokinetic analysis for linear mammillary systems in which input and exit may occur in/from any compartment.J. Pharmacokin. Biopharm. (in press).Google Scholar
  12. 12.
    J. G. Wagner. Linear pharmacokinetic equations allowing direct calculation of many needed pharmacokinetic parameters from the coefficients and exponents of polyexponential equations which have been fitted to the data.J. Pharmacokin. Biopharm. 4:443–467 (1976).CrossRefGoogle Scholar
  13. 13.
    W. L. Chiou. Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve.J. Pharmacokin. Biopharm. 6:539–546 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Nobutoshi Watari
    • 1
  • Leslie Z. Benet
    • 1
  1. 1.Department of Pharmac, School of PharmacyUniversity of CaliforniaSan Francisco

Personalised recommendations