Advertisement

Journal of Pharmacokinetics and Biopharmaceutics

, Volume 17, Issue 5, pp 529–550 | Cite as

Pharmacokinetics of an ACE inhibitor, S-9780, in man: Evidence of tissue binding

  • K. R. Lees
  • A. W. Kelman
  • J. L. Reid
  • B. Whiting
Article

Abstract

Pharmacokinetic data from 20-min constant rate infusions of the ACE inhibitor S-9780 1 mg to 16 subjects were studied for evidence of nonlinearity. A hierarchy of standard compartmental models and of nonlinear binding models was fitted to the data by least squares nonlinear regression and the most appropriate model was chosen on the basis of F-ratio tests, Schwarz criteria, and residual plots. A one-compartment model which included saturable tissue and plasma binding components allowed the best overall description of the data. Median parameter estimates from this model suggest that approximately 308 nmol of plasma binding sites and 572 nmol of tissue binding sites were present and that the total plasma concentration of S-9780 at 50% saturation of binding sites was 16.5 nmol L−1. The elimination half-life for free drug in plasma was only 30 min. This model describes the discrepancy previously noted between accumulation and apparent elimination half-lives for long-acting ACE inhibitors and offers a noninvasive method for assessment of tissue-bound ACE inhibitorin vivo.

Key words

nonlinear tissue binding angiotensin converting enzyme S-9780 perindopril 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Hockings, A. A. Ajayi, and J. L. Reid. Age and the pharmacokinetics of angiotension converting enzyme inhibitors enalapril and enalaprilat.Br. J. Clin. Pharmacol. 21:341–348 (1986).PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    K. R. Lees and J. L. Reid. Effects of intravenous S-9780, an angiotensin-converting enzyme inhibitor, in normotensive subjects.J. Cardiovasc. Pharmacol. 10:129–135 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    A. E. Till, H. J. Gomez. M. Hichens, J. A. Bolognese, W. R. McNabb, B. A. Brooks, F. Noormohamed, and A. F. Lant. Pharmacokinetics of repeated single oral doses of enalapril maleate (MK-421) in normal volunteers.Biopharm. Drug Dispos. 5:273–280 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    P. J. McNamara, G. Levy, and M. Gibaldi. Effect of plasma protein and tissue binding on the time course of drug concentration in plasma.J. Pharmacokin. Biopharm. 7:195–206 (1979).CrossRefGoogle Scholar
  5. 5.
    S. Øie, T. W. Guentert, and T. N. Tozer. Effect of saturable binding on the pharmacokinetics of drugs: A simulation.J. Pharm. Pharmacol. 32:471–477 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    P. J. McNamara, J. T. Slattery, M. Gibaldi, and G. Levy. Accumulation kinetics of drugs with nonlinear plasma protein and tissue binding characteristics.J. Pharmacokin. Biopharm. 7:397–405 (1979).CrossRefGoogle Scholar
  7. 7.
    R. J. Francis, A. N. Brown, L. Kler, T. Fasanella d'Amore, J. Nussberger, B. Waeber, and H. R. Brunner. Pharmacokinetics of the converting enzyme inhibitor cilazapril in normal volunteers and the relationship to enzyme inhibition: development of a mathematical model.J. Cardiovasc. Pharmacol. 9:32–38 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    K. R. Lees, S. T. Green, and J. L. Reid. Influence of age on the pharmacokinetics and pharmacodynamics of perindopril.Clin. Pharmacol. Ther. 44:418–425 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    D. J. Tocco, F. A. de Luna, A. E. W. Duncan, T. C. Vassil, and E. H. Ulm. The physiological disposition and metabolism of enalapril maleate in laboratory animals.Drug Metab. Dispos. 10:15–19 (1982).PubMedGoogle Scholar
  10. 10.
    S. G. Chiknas. A liquid chromatography-assisted assay for angiotensin converting enzyme (peptidyl dipeptidase) in serum.Clin. Chem. 25:1259–1262 (1979).PubMedGoogle Scholar
  11. 11.
    D. W. Cushman and H. S. Cheung. Spectrophotometric assay and properties of the angiotensin converting enzyme of rabbit lung.Biochem. Pharmacol. 20:1638–1648 (1971).CrossRefGoogle Scholar
  12. 12.
    M. Ralston. Derivative-free nonlinear regression. In W. J. Dixon, M. B. Brown, L. Engelman, J. W. Frane, M. A. Hill, R. I. Jennrich, and J. D. Toporek (eds.)BMDP Statistical Software, California Press, Loa Angeles, CA, 1983, Chap. 14.2, pp. 305–314.Google Scholar
  13. 13.
    J. Neter and W. Wasserman, Inferences in regression analysis. InApplied Linear Statistical Models, Irwin, Homewood, IL, 1974, Chap. 7, pp. 87–92.Google Scholar
  14. 14.
    G. T. Schwarz. Estimating the dimension of a model.Ann. Statist. 6:461–464 (1978).CrossRefGoogle Scholar
  15. 15.
    B. Efron and G. Gong. A leisurely look at the bookstrap, the jackknife and cross-validation.Am. Statist. 37:36–48 (1983).Google Scholar
  16. 16.
    J. R. Harrigan, D. M. Hughes, and P. A. Meredith. Characterising interspecies differences in ACE inhibition.Br. J. Clin. Pharmacol. 27:656P (1989).Google Scholar
  17. 17.
    J. W. Ryan. Assay of peptidase and protease enzymes in vivo.Biochem. Pharmacol. 32:2127–2137 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    C. J. Lindsey, L. M. Bendhack, and A. C. M. Paiva. Effects of teprotide, captopril and enalaprilat on arterial wall kininase and angiotensin converting activity.J. Hypertension 5(Suppl. 2):S71-S76 (1987).CrossRefGoogle Scholar
  19. 19.
    V. J. Dzau, J. Rosenthal, and J. D. Swales. Vascular renin-A consensus view.J. Hypertension 5 (Suppl. 2):S77-S78 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • K. R. Lees
    • 1
  • A. W. Kelman
    • 2
  • J. L. Reid
    • 1
  • B. Whiting
    • 1
  1. 1.Stobhill General HospitalUniversity Department of Materia MedicaGlasgowScotland
  2. 2.Department of Clinical Physics and BioengineeringGreater Glasgow Health BoardGlasgowScotland

Personalised recommendations