Skip to main content
Log in

Graphs and degree sequences. I

  • Published:
Cybernetics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

Publications in Russian

  1. A. S. Asratyan and N. K. Khachatryan, “Two theorems on Hamiltonian graphs,” Mat. Zametki,35, No. 1, 55–61 (1984).

    Google Scholar 

  2. N. N. Busnyuk, “The number of 3-cycles in graphs with given degree of vertices,” Vestn. Bel. Gos. Univ., Ser. 1, No. 1, 57–58 (1984).

    Google Scholar 

  3. I. E. Zverovich, “A proof of the theorem of S. B. Rao on forcibly planar sequences,” published by Izv. AN BSSR, Minsk (1987). Manuscript available from VINITI, No. 2828-V87 Dep.

  4. I. E. Zverovich, “Iterated degree sequences,” Izv. AN BSSR, No. 1, 30–34 (1987).

    Google Scholar 

  5. I. E. Zverovich, “Iterated degree sequences” published by Izv. AN BSSR, Minsk (1986). Manuscript available from VINITI, 1986, No. 1227-V87 Dep.

    Google Scholar 

  6. I. E. Zverovich, “The degree set and traversability of a graph,” published by Izv. AN BSSR, Ser. Phys.-Math. Sci., Minsk (1986). Manuscript available from VINITI, 1986, No. 7560-V86 Dep.

    Google Scholar 

  7. I. E. Zverovich, “Realizability of a finite set of natural numbers as the set of vertex degrees of a Hamiltonian graph,” Izv. AN BSSR, Ser. Phys.-Math. Sci., No. 4, 32–37 (1986).

    Google Scholar 

  8. V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich, “The isomorphism problem for graphs,” Zap. Nauch. Seminarov LOMI AN SSSR,118 83–158 (1982).

    Google Scholar 

  9. P. P. Kozhich, “Linear algorithms for recognizing polarity and graphic property,” Izv. AN BSSR, Ser. Phys.-Math. Nauk, No. 2, 23–28 (1986).

    Google Scholar 

  10. A. A. Mironov, “On realizability of the set of nonnegative integers by the degrees of the vertices of a graph,” Tr. MIIT,510, 29–33 (1976).

    Google Scholar 

  11. A. A. Mironov, “On realizability of collections of numbers by a graph and the properties of graphs with a prescribed collection of degrees,” in: Combinatorial-Algebraic Methods in Applied Mathematics [in Russian], Gor'kovsk. Gos. Univ., Gor'kii (1981), pp. 76–97.

    Google Scholar 

  12. R. I. Tyshkevich, “Canonical decomposition of a graph,” Dokl. AN BSSR,24, No. 8, 677–679 (1980).

    Google Scholar 

  13. R. I. Tyshkevich, “An algebraic approach to problems in graph theory,” Abstract of Thesis [in Russian], Kiev (1983).

  14. R. I. Tyshkevich, O. I. Mel'nikov, and V. M. Kotov, “On graphs and degree sequences: canonical decomposition,” Kibernetika, No. 6, 5–8 (1981).

    Google Scholar 

  15. R. I. Tyshkevich and A. A. Chernyak, “Unigraphs. I,” Izv. AN BSSR, Ser. Phys.-Math. Nauk, No. 5, 5–11 (1978).

    Google Scholar 

  16. R. I. Tyshkevich and A. A. Chernyak, “Canonical decomposition of a graph defined by the degrees of its vertices,” Kibernetika, No. 5, 14–26 (1979).

    Google Scholar 

  17. R. I. Tyshkevich and A. A. Chernyak, ”Decomposition of graphs,” Kibernetika, No. 2, 67–74 (1985).

    Google Scholar 

  18. R. I. Tyshkevich, A. A. Chernyak, and Zh. A. Chernyak, “On forcibly P-graphic sequences,” Dokl. AN BSSR,29, No. 8, 677–680 (1985).

    Google Scholar 

  19. R. I. Tyshkevich and Zh. A. Chernyak, ”A catalog of planar unigraphs,” Dokl. AN BSSR,23, No. 4, 307–310 (1979).

    Google Scholar 

  20. A. A. Chernyak, “Connectivity of graphs with prescribed degree set and order. Unigraphic property,” Dokl. AN BSSR,28, No. 5, 400–403 (1984).

    Google Scholar 

  21. A. A. Chernyak, “Switching complete properties of graphs,” Izv. AN BSSR, Ser. Phys.-Math. Sci., No. 1, 29–35 (1985).

    Google Scholar 

  22. A. A. Chernyak, “Minimal graphs with prescribed degree set and girth,” Izv. AN BSSR, Ser. Phys.-Math. Sci., No. 2, 5–9 (1987).

    Google Scholar 

  23. A. A. Chernyak and Zh. A. Chernyak, “Degree sequences of edges and their realizations,” Dokl. AN BSSR,25, No. 7, 594–597 (1981).

    Google Scholar 

  24. Zh. A. Chernyak, “Hamiltonian unigraphs,” Izv. AN BSSR, Ser. Phys.-Math. Sci., No. 1, 23 (1981).

  25. Zh. A. Chernyak, “Connected realizations of degree sequences of edges,” Izv. AN BSSR, Ser. Phys.-Math. Sci., No. 3, 43–47 (1982).

    Google Scholar 

  26. Zh. A. Chernyak, “Bipartite and 0-cyclic realizations of integer pair sequences,” published by Izv. AN BSSR, Ser. Phys.-Math. Sci., Minsk (1982). Manuscript available from VINITI, 1982, No. 6551-82 Dep.

    Google Scholar 

  27. Zh. A. Chernyak, “On one property of adjacency matrices of realizations of pair sequences,” Kibernetika, No. 6, 10–13 (1983).

    Google Scholar 

  28. Zh. A. Chernyak, “Degree sequences of graphs,” Abstract of Thesis [in Russian], Minsk (1984).

  29. Zh. A. Chernyak, “2-edge connected realizations of graphic pair sequences,” Dokl. AN BSSR,27, No. 3, 204–207 (1983).

    Google Scholar 

  30. Zh. A. Chernyak, “Characterization of potentially self-complementary and forcibly selfcomplementary pairs,” Dokl. AN BSSR,27, No. 6, 497–500 (1983).

    Google Scholar 

  31. Zh. A. Chernyak, “Self-complementary realizations of edge degree sequences,” Mat. Zametki,34 No. 2, 297–308 (1983).

    Google Scholar 

  32. Zh. A. Chernyak, “Potentially 2-connected integer pair sequences,” Mat. Zametki,39 No. 6, 918–933 (1986).

    Google Scholar 

Publications in Other Languages

  1. B. Acharya and M. Vartak, “On the construction of graphs with given constant valence-difference on each of their lines,” Wiss. Z. Techn. Hochsch. Ilmenau,23, No. 6, 33–60 (1977).

    Google Scholar 

  2. N. Achutan, “Characterization of potentially connected integer-pair sequences,” Lect. Notes Math.,885, 153–164 (1981).

    Google Scholar 

  3. M. Aigner, “Uses of the diagram lattice,” Mitt. Math. Sem. Giessen,163, 61–77 (1984).

    Google Scholar 

  4. K. Ando, “Rao's conjecture on self-complementary graphs with k-factors,” J. Graph Theory,9, 119–121 (1985).

    Google Scholar 

  5. R. P. Anstee, “Properties of (0, 1)-matrices with no triangles,” J. Combinat. Theory,A29, 186–198 (1980).

    Google Scholar 

  6. R. P. Anstee, “The network flows approach for matrices with given row and column sums,” Discrete Math.,44, No. 2, 125–138 (1983).

    Google Scholar 

  7. D. Bauer, “On regular line graphs,” Ann. NY Acad. Sci.,328, 30–31 (1979).

    Google Scholar 

  8. D. Bauer, “Line-graphic degree sequences,” J. Graph Theory,4, 212–232 (1980).

    Google Scholar 

  9. D. Bauer, G. Bloom, and F. Boesch, “Edge-to-point degree lists and extremal triangle point degree regular graphs,” in: Progress in Graph Theory, Academic Press, NY (1984), pp. 93–104.

    Google Scholar 

  10. L. W. Beineke and E. F. Schmeichel, “Degrees and cycles in graphs,” Ann. NY Acad. Sci.,3, 64–70 (1979).

    Google Scholar 

  11. E. E. Bender, L. B. Richmond, and N. C. Wormald, “Almost all chordal graphs are split,” J. Austral. Math. Soc.,38, No. 2, 214–221 (1985).

    Google Scholar 

  12. C. Benzaken and P. L. Hammer, “Linear separation of dominating sets in graphs,” Ann. Discrete Math.,2, 1–10 (1978).

    Google Scholar 

  13. C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam (1973).

    Google Scholar 

  14. V. S. Bhat Kabekode and P. Rashidi, “The elementary tree modification operation and bicycle realizability of degree lists,” Stud. Sci. Math. Hung.,15, 1–9 (1980).

    Google Scholar 

  15. V. M. Bhat-Nayk, R. N. Naik, and W. L. Kocay, “Forcibly 2-variegated degree sequences,” Utilitas Math.,18, 83–89 (1980).

    Google Scholar 

  16. D. Billington, “Degree sequences uniquely realizable by hypergraphs,” Lect. Notes Math.,829, 59–68 (1980).

    Google Scholar 

  17. D. Billington, “Degree sequences uniquely realizable within sets of hypergraphs,” Ars Combinatoria,10, 65–81 (1980).

    Google Scholar 

  18. D. Billington, “connected subgraphs of the graph of multigraphic realizations of degree sequences,” Lect. Notes Math.,884, 125–135 (1981).

    Google Scholar 

  19. D. Billington, “The graph of hypergraphic realizations of denumerable multisets of degrees,” Lect. Notes Math.,952, 150–181 (1982).

    Google Scholar 

  20. D. Billington, “The connectedness of the graph of exact m-graphic realizations of degree multisets,” Ars Combinatoria,16, 183–221 (1983).

    Google Scholar 

  21. R. E. Bixby and D. L. Wang, “An algorithm for finding Hamiltonian circuits in certain graphs,” Math. Program. Study, No. 8, 35–49 (1978).

    Google Scholar 

  22. G. S. Bloom, J. W. Kennedy, and L. V. Quintas, “Distance degree regular graphs,” in: The Theory and Applications of Graphs, 4th Int. Conf. (Michigan, 1980), West Michigan Univ. (1981), pp. 95–108.

  23. G. S. Bloom, J. W. Kennedy, and L. V. Quintas, “Some problems concerning distance and path degree sequences,” Lect. Notes Math.,1018, 179 (1983).

    Google Scholar 

  24. F. T. Boesch and S. Chen, “A generalization of line connectivity and optimality in vulnerable graphs,” SIAM J. Appl. Math.,34, 657–665 (1978).

    Google Scholar 

  25. F. T. Boesch and F. Harary, “Line removal algorithms for graphs and their degree lists,” IEEE Trans., Circuits Sys.,23, No. 12, 778–782 (1976).

    Google Scholar 

  26. F. T. Boesch and F. Harary, “Unicyclic realizability of a degree list,” Networks,8, 93–96 (1978).

    Google Scholar 

  27. B. Bollobas, Extremal Graph Theory, Academic Press, NY (1978).

    Google Scholar 

  28. I. A. Bondy, “Properties of graphs with constraints on degrees,” Stud. Sci. Math. Hung.,4, 473–475 (1969).

    Google Scholar 

  29. I. A. Bondy and V. Chvatal, “A method in graph theory,” Discrete Math.,15, 111–135 (1976).

    Google Scholar 

  30. V. Boonyasombat, “Degree sequences of connected hypergraphs and hypertrees,” Lect. Notes Math.,1073, 236–247 (1984).

    Google Scholar 

  31. R. A. Brualdi, “OL probleme,” Colloq. CNRS Probl. Combinat. et Graph Theory, Orsay (1976), p. 437.

  32. R. A. Brualdi, “Matrices of zeros and ones with fixed row and column sum vectors,” Linear Algebra Appl.,30, 159–231 (1980).

    Google Scholar 

  33. R. A. Brualdi, “A note on degree sequences of graphs,” Can. Math. Bull.,23, 21–27 (1980).

    Google Scholar 

  34. F. Buckley and L. Superville, “Distance distributions and mean distance problems,” Proc. 3rd Carribean Conf. on Combinatorics and Computing, Barbados (1981).

  35. M. Capobianko, S. Mauer, D. McCarthy, and J. Mollugo, “A collection of open problems,” Ann. NY Acad. Sci.,319, 577 (1979).

    Google Scholar 

  36. G. Chartrand, “A graph theoretic approach to a communication problem,” SIAM J. Appl. Math.,14, 778–781 (1966).

    Google Scholar 

  37. G. Chartrand, R. Gould, and S. Kapoor, “Graphs with prescribed degree sets and girths,” Period. Math. Hungar.,12, 261–266 (1981).

    Google Scholar 

  38. G. Chartrand, R. Gould, A. Polimeni, and C. Wall, “Bigraphical sets,” Proc. 4th Conf. on Theory and Application of Graphs, Michigan Univ. (1980), pp. 181–188.

  39. P. D. Chawathe, “2-perfect graphic degree sequences,” Lect. Notes. Math.,885, 195–202 (1981).

    Google Scholar 

  40. A. A. Chernyak, Zh. A. Chernyak, and R. I. Tyshkevich, “On forcibly hereditary P-graphic sequences,” Discrete Math.,64, 118 (1987).

    Google Scholar 

  41. S. A. Choudum, “Characterization of forcibly outerplanar graphic sequences,” Lect. Notes Math.,885, 203–207 (1981).

    Google Scholar 

  42. V. Chungphaisan, “Conditions for sequences to be r-graphic,” Discrete Math.,7, 31–41 (1974).

    Google Scholar 

  43. V. Chungphaisan, “Construction of Hamiltonian graphs and digraphs with prescribed degrees,” J. Combinat. Theory,B24, 154–163 (1978).

    Google Scholar 

  44. V. Chvatal, “On Hamilton's ideal,” J. Combinat. Theory,12, 163–168 (1972).

    Google Scholar 

  45. V. Chvatal and P. L. Hammer, “Set-packing problems and threshold graphs,” Preprint, Univ. Waterloo NCORR 73–21, Waterloo (1983).

    Google Scholar 

  46. V. Chvatal and P. L. Hammer, “Aggregation of inequalities in integer programming,” Ann. Discrete Math.,1, 145–162 (1977).

    Google Scholar 

  47. C. I. Colbourn, “Graph generation,” Univ. Waterloo Res. Rep. CS-77-37 (1977).

  48. P. Das, “Results on Degree Sequences and Integer-Pair Sequences of Graphs and Digraphs,” PhD Thesis, Indian Statist. Inst., Calcutta (1981).

    Google Scholar 

  49. P. Das, “Characterization of unigraphic and unidigraphic integer-pair sequences,” Discrete Math.,37, 51–66 (1981).

    Google Scholar 

  50. P. Das, “Degree sequences of multipartite graphs and digraphs,” Utilitas Math.,22, 7–15 (1982).

    Google Scholar 

  51. P. Das, “Unidigraphic and unigraphic degree sequences through uniquely realizable integer-pair sequences,” Discrete Math.,45, 45–59 (1983).

    Google Scholar 

  52. P. Das, “Integer-pair sequences with self-complementary realizations,” Discrete Math.,45, 189–198 (1983).

    Google Scholar 

  53. P. Das and S. Rao, “Alternating Eulerian trails with prescribed degrees in two edgecolored complete graphs,” Discrete Math.,43, 9–20 (1983).

    Google Scholar 

  54. A. K. Dewdney, “Degree sequences in complexes and hypergraphs,” Proc. AMS,53, 535–540 (1975).

    Google Scholar 

  55. R. Duke and P. Winkler, “Degree set of k-trees: small k,” Isr. J. Math.,40, Nos. 3–4, 296–306 (1981).

    Google Scholar 

  56. R. Duke and P. Winkler, “Realizability of almost all degree sets by k-trees,” Congr. Numer.,35, 261–273 (1982).

    Google Scholar 

  57. R. B. Eggleton, “Graphic sequences and graphic polynomials: a report,” Infinite and Finite Sets,1, 385–392 (1975).

    Google Scholar 

  58. R. B. Eggleton and D. A. Holton, “Path realizations of multigraphs,” Res. Rep. Univ. Melbourne No. 33, Melbourne (1978).

  59. R. B. Eggleton and D. A. Holton, “Graphite sequences,” Lect. Notes Math.,748, 1–10 (1979).

    Google Scholar 

  60. R. B. Eggleton, and D. A. Holton, “The graph of type (0, ∞, ∞) realizations of a graphic sequence,” Lect. Notes Math.,748, 40–54 (1979).

    Google Scholar 

  61. R. B. Eggleton and D. A. Holton, “Simple and multigraphic realizations of degree sequences,” Lect. Notes Math.,884, 155–172 (1981).

    Google Scholar 

  62. P. Erdös and T. Gallai, “Graphs with prescribed degrees of vertices,” Mat. Lapok,11, 264–274 (1960).

    Google Scholar 

  63. G. Exoo and F. Harary, “The forcibly tree and forcibly unicyclic degree sequences,” Elem. Math.,37, No. 2, 41–46 (1982).

    Google Scholar 

  64. S. Fanelli, “On a conjecture of a class of maximal planar graphs,” J. Graph Theory,4, 371–375 (1980).

    Google Scholar 

  65. S. Fanelli, “An unresolved conjecture on nonmaximal planar graphic sequences,” Discrete Math.,36, 109–112 (1981).

    Google Scholar 

  66. S. Fanelli, “On the existence and connectivity of a class of maximal planar graphs,” Calcolo,19, 157–167 (1982).

    Google Scholar 

  67. S. Fanelli, “On the connectivity of maximal planar graphs with minimum degree 5,” Combinatorics '81, Math. Stud.,78, 343–353 (1983).

    Google Scholar 

  68. E. J. Farrel, “On graphic partitions and planarity,” Discrete Math.,18, No. 2, 149–153 (1977).

    Google Scholar 

  69. S. Foldes and P. L. Hammer, “Split graph,” Preprint, Univ. Waterloo CORR 76-3, Waterloo (1976).

  70. S. Foldes and P. L. Hammer, “Split graph,” Proc. 8th Southeastern Conf. Combinatorics, Graph Theory and Computing, Boca Raton, Florida (1977).

  71. S. Foldes and P. L. Hammer, “On a class of matroid producing graphs,” Colloq. Math. Soc. J. Bolyai,18, 331–352 (1978).

    Google Scholar 

  72. D. R. Fulkerson, A. J. Hoffman, and M. H. McAndrew, “Some properties of graphs with multiple edges,” Can. J. Math.,17, No. 1, 225–235 (1965).

    Google Scholar 

  73. D. A. Gale, “A theorem on flows in networks,” Pac. J. Math.,7, 1073–1082 (1957).

    Google Scholar 

  74. T. Gangopadhyay, “Characterization of forcibly bipartite self-complementary bipartitioned sequences,” Lect. Notes Math.,885, 237–260 (1981).

    Google Scholar 

  75. T. Gangopadhyay, “Characterization of potentially bipartite self-complementary bipartitioned sequences,” Discrete math.,38, 173–184 (1982).

    Google Scholar 

  76. A. J. Goldman, and R. H. Byrd, “Minimum-loop realization of degree sequences,” J. Res. Nat. Bur. Stand.,87, 75–78 (1982).

    Google Scholar 

  77. D. L. Goldsmith and A. T. White, “On graphs with equal edge-connectivity and minimum degree,” Discrete Math.,23, 31–36 (1978).

    Google Scholar 

  78. M. C. Golumbic, “Threshold graphs and synchronizing processes,” Combinatorics '76,1, 419–428 (1978).

    Google Scholar 

  79. R. Gould, “Degree sets for homogeneously traceable non-Hamiltonian graphs,” Colloq. Math.,XLV, 155–158 (1981).

    Google Scholar 

  80. R. Gould and D. Lick, “Degree sets and graph factorizations,” Colloq. Math.,XLVIII, No. 2, 269–277 (1984).

    Google Scholar 

  81. M. Groetschel, “Graphs with cycles containing given paths,” Ann. Discrete Math.,1, 233–245 (1977).

    Google Scholar 

  82. S. L. Hakimi, “On realizability of a set of integers as degrees of the vertices of a linear graph. I, II,” J. SIAM,10, 469–502 (1962);11, 135–147 (1963).

    Google Scholar 

  83. S. L. Hakimi and E. F. Schmeichel, “Graphs and degree sequences: a survey,” Lect. Notes Math.,642, 225–235 (1978).

    Google Scholar 

  84. S. L. Hakimi and E. F. Schmeichel, “On the connectivity of maximal planar graphs,” J. Graph Theory,2, 307–314 (1978).

    Google Scholar 

  85. A. A. Chernyak, “Degree sets of graphs and the Hamiltonian property,” Dokl. AN BSSR,31, No. 12, 920–923 (1987).

    Google Scholar 

  86. F. Y. Halberstam and J. Zak, “A note on planarity and distance degree sequences,” Lect. Notes Math.,1018, 286–289 (1983).

    Google Scholar 

  87. P. L. Hammer, T. Ibaraki, and B. Simeone, “Degree sequences of threshold graphs,” Proc. 9th S. E. Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, 1978), Florida Atlant. Univ., Boca Raton (1978), pp. 239–255.

    Google Scholar 

  88. P. L. Hammer, T. Ibaraki, and B. Simeone, “Threshold sequences,” SIAM J. Algebraic and Discrete Methods,2, 39–49 (1981).

    Google Scholar 

  89. P. L. Hammer and B. Simeone, “The splittance of a graph,” Combinatorica,1, No. 3, 275–284 (1981).

    Google Scholar 

  90. F. Harary, “The structure of threshold graphs,” Riv. Mat. Sci. Econ. Soc.,2, 169–172 (1979).

    Google Scholar 

  91. F. Harary and A. Vince, “Graphic completions of sequences,” SIAM J. Appl. Math.,38, 402 (1980).

    Google Scholar 

  92. W. Havel, “A remark on the existence of finite graphs,” Casopis. Pěst. Mat.,80, 477–480 (1955).

    Google Scholar 

  93. P. B. Henderson and Y. Zalstein, “A graph-theoretic characterization of the PV chunkclass of the synchronizing primitives,” SIAM J. Comput.,6, 88–108 (1977).

    Google Scholar 

  94. T. Hilano and K. Nomurak, “Distance degree regular graphs,” J. Combinat. Theory,B37, 96–100 (1984).

    Google Scholar 

  95. M. Javdekar, “Characterization of forcibly k-variegated degree sequences,k≥3,” Discrete Math.,29, 33–38 (1980).

    Google Scholar 

  96. R. H. Johnson, “Simple separable graphs,” Pacif. J. Math.,56, 143–158 (1975).

    Google Scholar 

  97. R. H. Johnson, “Properties of unique realizations—a survey,” Discrete Math.,31, 185–187 (1980).

    Google Scholar 

  98. R. H. Johnson, “Describing simple blocks,” Proc. 13th Southeastern Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, 1982), Congr. Numer.,36, 295–301 (1982).

    Google Scholar 

  99. N. A. Joshi, “4-perfect degree sequences,” J. Combinat., Inform. Syst. Sci.,9, 87–96 (1984).

    Google Scholar 

  100. Z. Kapoor and L. Lesnjak-Foster, “Degree sets for triangle-free graphs,” Ann. NY Acad. Sci.,319, 320–330 (1979).

    Google Scholar 

  101. S. F. Kapoor, A. Polimeni, and C. Wall, “Degree sets for graphs,” Fund. Math.,95, 189–194 (1977).

    Google Scholar 

  102. J. W. Kennedy and L. V. Quintas, “Extremal trees and embedding spaces for molecular graphs,” Discrete Appl. Math.,5 (1983).

  103. D. J. Kleitman and S.-Y. Li, “A note on unigraphic sequences,” Stud. Appl. Math.,54, No. 4, 283–287 (1975).

    Google Scholar 

  104. D. J. Kleitman and D. L. Wang, “Algorithms for constructing graphs and digraphs with given valences and factors,” Discrete Math.,6, 79–88 (1973).

    Google Scholar 

  105. W. Kocay, “On reconstructing degree sequences,” Utilitas Math.,17, 151–162 (1980).

    Google Scholar 

  106. M. Koren, “Pairs of sequences with a unique realization by bipartite graphs,” J. Combinat. Theory,B21, No. 3, 224–234 (1976).

    Google Scholar 

  107. M. Koren, “Sequences with a unique realization by simple graphs,” J. Combinat. Theory,B21, No. 3, 235–244 (1976).

    Google Scholar 

  108. K. H. Kulkarni, “Sufficient conditions for edge-locally-n-connected graphs,” Časopis. Pěst. Mat.,106, 112–116 (1981).

    Google Scholar 

  109. S. Kundu, “The k-factor conjecture is true,” Discrete Math.,6, 367–376 (1973).

    Google Scholar 

  110. L. Lesniak, A. Polimeni, and D. Vanderjayt, “Degree set and traversability,” Rend. Math.,10, Nos. 2–3, 193–204 (1977–1978).

    Google Scholar 

  111. L. Lesniak-Foster, “Some recent results in Hamiltonian graphs,” J. Graph Theory, No. 1, 27–36 (1977).

    Google Scholar 

  112. S.-Y. Li, “Graphic sequences with unique realization,” J. Combinat. Theory,B19, No. 1, 42–68 (1975).

    Google Scholar 

  113. Z. Majcher, “Graphic matrices,” Preprint, Bratislava Univ. No. 1886, Bratislava (1986).

  114. Z. Majcher, “On some regularities of graphs. II,” Časopis. Pěst. Mat.,109, 380–388 (1984).

    Google Scholar 

  115. Z. Majcher, “On sequences representable by r-regular graphs,” Lect. Notes Math.,1018, 131–138 (1983).

    Google Scholar 

  116. Z. Majcher, “Matrices representable by graphs,” Proc. 3rd Czechoslovak Symp. on Graph Theory (Prague, 1982), Teubner-Texte zur Mathem., Prague (1983), pp. 178–182.

    Google Scholar 

  117. P. Marchioro, A. Morgana, R. Petreschi, and B. Simeone, “Degree sequences of matrogenic graphs,” Discrete Math.,51, 46–61 (1984).

    Google Scholar 

  118. P. J. McCarthy, “Pseudographs with degrees in prescribed intervals,” Bull. Malaysian Math. Soc.,6, 23–29 (1983).

    Google Scholar 

  119. J. Mitchem and E. Schmeichel, “Pancyclic and bipancyclic graphs—a survey,” Graphs and Applications, Proc. 1st Colorado Symp. in Graph Theory, Colorado (1958), pp. 217–285.

  120. A. N. Patrinos and S. L. Hakimi, “Relations between graphs and integer-pair sequences,” Discrete Math.,15, 347–358 (1976).

    Google Scholar 

  121. U. N. Peled, “Threshold graph enumeration and series-product identities,” Proc. 11th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Boca Raton, Florida (1980), pp. 735–738.

  122. U. N. Peled, “Matroidal graphs,” Discrete Math.,20, 263–286 (1977).

    Google Scholar 

  123. U. N. Peled and B. Simeone, “Box-threshold graphs,” J., Graph Theory,8, No. 2, 331–345 (1984).

    Google Scholar 

  124. J. Plonka, “On some regularities of graphs. I,” Časopis. Pěst. Mat.,107, 231–240 (1982).

    Google Scholar 

  125. L. Posa, “On the circuits of finite graphs,” Publ. Math. Inst. Hung. Acad. Sci.,8, 355–361 (1963).

    Google Scholar 

  126. L. V. Quintas and P. J. Slater, “Pairs of nonisomorphic graphs having the same path degree sequence,” MATCH, No. 12, 75–86 (1981).

    Google Scholar 

  127. M. Randic, “Characterizations of atoms, molecules and classes of molecules based on path enumerations,” MATCH, No. 7, 5–64 (1979).

    Google Scholar 

  128. A. R. Rao, “Degree sequences of cacti,” Lect. Notes Math.,885, 410–416 (1981).

    Google Scholar 

  129. A. R. Rao and S. B. Rao, “On factorable degree sequences,” J. Combinat. Theory,B13, 185–191 (1972).

    Google Scholar 

  130. S. B. Rao, “Characterization of self-complementary graphs with 2-factors,” Discrete Math.,17, 225–233 (1977).

    Google Scholar 

  131. S. B. Rao, “Characterization of forcibly planar degree sequences,” Report Indian Statist. Inst. Techn., No. 36/78 (1978).

  132. S. B. Rao, “A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences,” Lect. Notes Math.,885, 417–440 (1981).

    Google Scholar 

  133. S. B. Rao, “Towards a theory of forcibly hereditary P-graphic sequences,” Lect. Notes Math.,885, 441–458 (1981).

    Google Scholar 

  134. K. T. Rawlinson and R. C. Entriger, “Class of graphs with restricted neighbourhoods,” J. Graph. Theory,3, 257–262 (1979).

    Google Scholar 

  135. E. Ruch and I. Gutman, “The branching extent of graphs,” J., Combinat., Inform. Syst. Sci.,4, No. 4, 285–295 (1979).

    Google Scholar 

  136. A. Ruscitti, “Sulla struttura delle classi Fn,k di grafi planari massimali,” Rend. Mat.,11, 243–269 (1978).

    Google Scholar 

  137. H. J. Ryser, “Combinatorial properties of matrices of zeros and ones,” Can. J. Math.,9, 371–377 (1957).

    Google Scholar 

  138. E. F. Schmeichel and S. L. Hakimi, “Pancyclic graphs and a conjecture of Bondy and Chvatal,” J. Combinat. Theory,B17, 22–34 (1974).

    Google Scholar 

  139. E. F. Schmeichel and S. L. Hakimi, “On the existence of a traceable, graph with prescribed vertex degrees,” Ars Combinatoria,4, 69–80 (1977).

    Google Scholar 

  140. E. F. Schmeichel and S. L. Hakimi, “On planar graphical degree sequences,” SIAM J. Appl. Math.,32, 598–609 (1977).

    Google Scholar 

  141. F. Schmeichel and J. Mitchem, “Bipartite graphs with cycles of all even lengths,” J. Graph Theory,6, 429–439 (1982).

    Google Scholar 

  142. R. Simion, “Threes with 1-factors: degree distribution,” Congr. Numer.,45, 147–159 (Combinatorics, Graph Theory and Computing, Proc. 15th Southeastern Conf., Boca Raton, Fla.),

  143. T. Sipka, “The orders of graphs with prescribed degree sets,” J. Graph Theory,4, 301–307 (1980).

    Google Scholar 

  144. Z. Skupien, “Homogeneously traceable and Hamiltonian connected graphs,” Demonstr. Math.,XVII, No. 4, 1051–1067 (1984).

    Google Scholar 

  145. P. J. Slater, “Extended degree sequences of graphs,” Proc. 12th Southeastern Conf. on Combintorics, Graph Theory and Computing, Boca Raton, Florida (1981), pp. 2–5.

  146. P. J. Slater, “Counterexamples of Randic's conjecture on distance degree sequences of trees,” J Graph Theory, 89–92 (1982).

  147. R. Sokarovsky, “Existence and realization of graphs with prescribed degree and properties,” Univ. Skopje (1975).

  148. M. Syslo, “On tree and unicyclic realizations of degree sequences,” Demonstr. Math.,15, No. 4, 1071–1076 (1982).

    Google Scholar 

  149. D. E. Taylor, and R. Levingston, “Distance-regular graphs,” Lect. Notes Math.,686, 313–323 (1978).

    Google Scholar 

  150. R. Taylor, “Constrained switchings in graphs,” Lect. Notes Math.,884, 314–336, (1981).

    Google Scholar 

  151. R. Taylor, “Switchings constrained to 2-connectivity in simple graphs,” SIAM J. Algebr. Discrete Math., 121–141 (1982).

  152. M. Truszczynski, “Note on vertex degrees of planar graphs,” J. Graph. Theory,8, 171–176 (1984).

    Google Scholar 

  153. R. I. Tyshkevich, “Once more on matrogenic graphs,” Discrete Math.,51, 91–100 (1984).

    Google Scholar 

  154. R. I. Tyshkevich and A. A. Chernyak, “Box-threshold graphs: the structure and the enumeration,” 30 IWK Ilmenau (1985), pp. 119–121.

  155. D. L. Wang and D. J. Kleitman, “A note on n-edge connectivity,” SIAM J. Appl. Math.,26, 313–314 (1974).

    Google Scholar 

  156. D. Wolf, “Making connections: graphical construction,” Math. Mag.,54, 250–255 (1981).

    Google Scholar 

  157. P. K. Wong, “Cages—a survey,” J. Graph Theory,6, 1–22 (1982).

    Google Scholar 

  158. Y. Zhu and F. Tian, “A generalization of the Bondy-Chvatal theorem on the k-closure,” J. Combinat. Theory,B35, 247–255 (1983).

    Google Scholar 

Download references

Authors

Additional information

Translated from Kibernetika, No. 6, pp. 12–19, November–December, 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyshkevich, R.I., Chernyak, A.A. & Chernyak, Z.A. Graphs and degree sequences. I. Cybern Syst Anal 23, 734–745 (1987). https://doi.org/10.1007/BF01070234

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01070234

Keywords

Navigation