Skip to main content
Log in

Collective Hamiltonian method in optimal control problems

  • Published:
Cybernetics Aims and scope

Abstract

Some geometrical aspects of Hamiltonian systems arising in optimal control problems are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. R. W. Brockett, “Lie theory and control systems defined on spheres,” SIAM J. Appl. Math.,25, No. 2, 213–225 (1973).

    Google Scholar 

  2. J. Baillieul, “Geometric methods for nonlinear control problem,” J. Optim. Theory Appl.,25, No. 4, 519–548 (1978).

    Google Scholar 

  3. R. W. Brockett, “System theory on group manifolds and coset spaces,” SIAM J. Contr. Optim.,10, No. 2, 265–284 (1972).

    Google Scholar 

  4. L. E. Faibusovich, “On linear dynamic systems with symmetries,” Avtomat. Telemekh., No. 5, 82–89 (1983).

    Google Scholar 

  5. L. E. Faibusovich, “On stabilization of infinite-dimensional linear dynamic systems by the Kalman-Letov method,” Avtomat. Telemekh., No. 2, 52–58 (1985).

    Google Scholar 

  6. L. E. Faibusovich, “Algebraic Riccati equation and symplectic algebra,” Int. J. Contr.,43, No. 3, 781–792 (1986).

    Google Scholar 

  7. L. E. Faibusovich, “Existence and uniqueness of extremal solutions of the Riccati equation and symplectic, geometry,” Funkts. Anal. Ego Prilozhen.,19, No. 1, 85–86 (1985).

    Google Scholar 

  8. L. E. Faibusovich, “On the symplectic structure of the Riccati operator equation,” Kibernet. Vychisl. Tekh., No. 65, 62–67 (1985).

    Google Scholar 

  9. L. E. Faibusovich, “Riccati equation, multidimensional Euler equation, and isospectral deformation,” Kibernet. Vychisl. Tekh., No. 69, 37–40 (1986).

    Google Scholar 

  10. L. E. Faibusovich, “Analytical design of a linear regulator and multidimensional analog of the equations of rigid body dynamics,” Avtomat. Telemekh., No. 7, 81–90 (1987).

    Google Scholar 

  11. G. N. Yakovenko, “Trajectory synthesis of optimal control,” Avtomat. Telemekh., No. 6, 5–12 (1972).

    Google Scholar 

  12. M. Hazewinkel, “Control and filtering of a class of nonlinear but ‘homogeneous’ system,” Lect. Notes Inform. Sci. Contr.,39, 123–146 (1982).

    Google Scholar 

  13. Yu. N. Andreev, “Differential-geometric methods in control theory,” Avtomat. Telemekh., No. 9, 5–46 (1982).

    Google Scholar 

  14. V. Guillemin and S. Sternberg, “The moment map and collective motion,” Ann. Phys.,127, 52–65 (1980).

    Google Scholar 

  15. V. A. Yatsenko, “Dynamic equivalent systems in the solution of some optimal control problems,” Avtomatika, No. 4, 59–65 (1984).

    Google Scholar 

  16. F. Griffiths, External Differential Systems and Variational Calculus [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  17. A. M. Vershik and V. Ya. Gershkovich, “Geodesic flow on SL(2, R) with noholonomic constraints,” Zap. Nauchn. Seminarov LOMI,155, 7–17 (1985).

    Google Scholar 

  18. A. I. Kukhtenko, “On physics and cybernetics,” Kibernetika, No. 4, 133–138 (1981).

    Google Scholar 

  19. B. A. Dubrovin, S. P. Novikov, and A. P. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  20. A. Weinstein, “The local structure of Poisson manifolds,” J. Diff. Geom.,18, No. 3, 525–577 (1983).

    Google Scholar 

  21. V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  22. H. J. Sussman, “Lie brackets, real analyticity and geometric control theory,” Differential Geometric Control Theory, Birkhauser, Boston (1983), pp. 1–116.

    Google Scholar 

  23. A. G. Butkovskii and Yu. I. Samoilenko, Control of Quantum-Mechanical Processes [in Russian], Nauka, Moscow (1984).

    Google Scholar 

Download references

Authors

Additional information

Translated from Kibernetika, No. 2, pp. 73–77, March–April, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faibusovich, L.E. Collective Hamiltonian method in optimal control problems. Cybern Syst Anal 25, 230–237 (1989). https://doi.org/10.1007/BF01070131

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01070131

Keywords

Navigation