Skip to main content
Log in

Interaction of the processes of energy synthesis and consumption in a tissue infected by virus: A mathematical model

  • Published:
Cybernetics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. L. V. Davydovskii, “Methodological principles of pathology,” Arkh. Patologii,31, No. 6, 3–9 (1969).

    Google Scholar 

  2. G. V. Fol'bort, Selected Works [in Russian], Akad. Nauk USSR, Kiev (1968).

    Google Scholar 

  3. H. Selye, At the Level of the Whole Body [Russian translation], Nauka, Moscow (1972).

    Google Scholar 

  4. R. V. Petrov, Immunology and Immune Genetics [in Russian], Meditsina, Moscow (1980).

    Google Scholar 

  5. A. S. Gukovskaya, “The role of ions in lymphocyte activation,” Usp. Sovr. Biologii,97, No. 2, 179–192 (1984).

    Google Scholar 

  6. N. M. Berezhnaya and S. I. Yalkut, The Biological Role of Immunoglobulin [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  7. L. M. Likhtenshtein, “Anaphylactic reactions,” in: M. Cohen, P. A. Ward, and R. T. MacCloskey (editors), Immunological Mechanisms [Russian translation], Meditsina, Moscow (1983), pp. 23–39.

    Google Scholar 

  8. K. G. Chandy, T. E. DeCoursey, M. D. Cahalan, et al., “Electroimmunology: The physiologic role of ion channels in the immune system,” J. Immunol.,132, No. 2, 787–791 (1985).

    Google Scholar 

  9. G. I. Marchuk, Mathematical Models in Immunology [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  10. V. M. Glushkov, V. V. Ivanov, and V. M. Yanenko, The Modeling of Developing Systems [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  11. V. A. Saks, V. V. Kupriyanov, G. V. Elizarova, et al., “Regulation mechanisms of creatine phosphate synthesis in myocardial cells: Conjugation with glycolysis and mitochondrial oxidative phosphorylation and the role of creatinekinase compartmentalization,” in: E. I. Chazov and H. E. Morgan (editors), Myocardial Metabolism [Russian translation], Meditsina, Moscow (1981), pp. 67–87.

    Google Scholar 

  12. K. L. Atoev, “Mathematical model of the regulation of mechanical activity by creatine phosphate,” Kibernetika i Vychisl. Tekhnika, No. 63, 76–79 (1984).

    Google Scholar 

  13. K. L. Atoev, “Mathematical model of the regulation of myocardial contractility by energy transport system,” Kibernetika i Vychisl. Tekhnika, No. 66, 86–90 (1985).

    Google Scholar 

  14. G. I. Marchuk and R. V. Petrov, Viral Infection of the Organ and Immune Physiological Protection Reactions: A Mathematical Model, Preprint of the Department of Computational Mathematics, USSR Academy of Sciences, No. 51 [in Russian], Moscow (1983).

  15. J. Marsden and M. MacCracken, Bifurcation of the Cycle Generation and Its Applications [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  16. K. L. Atoev, A. A. Popov, and V. V. Ivanov, Mathematical Modeling of the Interaction of the Calcium Transport Myocardial Contractile Function and Myocardial Energy Metabolism, Preprint of the Institute of Cybernetics, Academy of Sciences of the Ukrainian SSR, No. 82-9 [in Russian], Kiev (1982).

  17. V. I. Kapel'ko, “The effects of hypoxia and ischemia on ionic transport and contractility of the Cardiac muscle,” Byull. VKNTs, No. 1, 102–110 (1981).

    Google Scholar 

  18. K. Yu. Bogdanov, L. V. Rozenshtraukh, and S. I. Zakharov, “Intracellular feedback in electromechanical conjugation of mammal myocardium,” Usp. Fiziol. Nauk,14, No. 2, 116–133 (1983).

    Google Scholar 

  19. W. G. Nayler, P. A. Pool-Wilson, and A. Williams, “Hypoxia and calcium,” J. Mol. Cell. Cardiol.,11, 683–706 (1979).

    Google Scholar 

  20. V. M. Yanenko and K. L. Atoev, “A model of excitable structure,” in: N. M. Amosov (editor), Mathematical Modeling and Experimental Study of Physiological Systems [in Russian], PIO Inst. Kibernetiki AN USSR, Kiev (1979), pp. 76–84.

    Google Scholar 

  21. V. M. Glushkov, V. V. Ivanov, V. M. Yanenko, et al., Modeling the Process of Adaptive Redistribution and Recovery Accumulation of Lymphocytes of the Thymus, Preprint of the Institute of Cybernetics, Academy of Sciences of the Ukrainian SSR, No. 82-30 [in Russian], Kiev (1982).

  22. V. S. Mikhalevich, V. V. Ivanov, V. M. Yanenko, et al., “Integrofunctional model of the hematopoiesis regulation system,” Kibernetika, No. 3, 69–77, 86 (1986).

    Google Scholar 

  23. V. M. Yanenko, K. L. Atoev, and V. A. Berezovskii, “Mathematical model of the interaction of aerobic and anaerobic oxidation in a hypothetical myocardial cell in hypoxia,” in: Special and Clinical Physiology of Hypoxia States, Part 2 [in Russian], Naukova Dumka, Kiev (1979), pp. 211–215.

    Google Scholar 

Download references

Authors

Additional information

Translated from Kibernetika, No. 3, pp. 90–96, May–June, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atoev, K.L., Ivanov, V.V. & Yanenko, V.M. Interaction of the processes of energy synthesis and consumption in a tissue infected by virus: A mathematical model. Cybern Syst Anal 22, 370–379 (1986). https://doi.org/10.1007/BF01069977

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01069977

Keywords

Navigation