Skip to main content
Log in

Mathematical modeling of short-term memory

  • Published:
Cybernetics Aims and scope

Conclusions

A study of the proposed mathematical model of the mechanism of operative memory indicates that formation of circulating excitations is accounted for by short-term trace effects of synaptic transmission, well known in neurophysiology (posttetanic potentiation, temporary facilitation, and path formation). These results give added support to the recirculation theory, which maintains that fixation and storage of incoming information occurs via a stream of nervous impulses circulating in closed chains. The circulation of a stream, in turn, leads to stable morphological or chemical alterations in the structure of the synaptic apparatus, which constitutes the basis of long-term memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. P. S. Kuznetsov and Yu. I. Petunin, “A study of random walk in neuronal networks and mathematical modeling of certain neurophysiological processes,” in: Statistical Electrophysiology. Proceedings of a Symposium on Statistical Electrophysiology [in Russian], Vilnius (1968), pp. 315–324.

  2. P. S. Kuznetsov, B. S. Mityagin, and Yu. I. Petunin, “Cyclicity of the final portion of random walk on a multigraph,” Proceedings of the Sixth Winter Institute on Mathematical Programming and Related Problems [in Russian], Moscow (1975), pp. 21–34.

  3. Ju. I. Petunin, “Mathematical modeling of synaptic transmission; neuronal models of memory,” Proc. of the First International Conference on Mathematical Modeling, St. Louis, U.S.A., No. 1, Aug. 29–Sept. (1977), pp. 34–45.

  4. S. Ochs, Elements of Neurophysiology, Wiley (1965).

  5. E. D. Adrian, The Basis of Sensation, Norton, New York (1928).

    Google Scholar 

  6. E. D. Adrian, “The electrical activity of the mammalian olfactory bulb,” Electroencephalogr. Clin. Neurophysiol., No. 2, 377–388 (1950).

    Google Scholar 

  7. B. H. Matthews, “The response of a single and organ,” J. Physiol., No. 71, 64–110 (1931).

    Google Scholar 

  8. H. K. Hartline, H. G. Wagner, and E. F. MacNichol, “The peripheral origin of nervous activity in the visual system,” Cold Spring Harbor Symp. Quant. Biol., No. 17, 125–141 (1952).

    Google Scholar 

  9. R. Galambos and H. Davis, “The response of single auditory-nerve fibers to acoustic stimulation,” J. Neurophysiol., No. 6, 39–58 (1943).

    Google Scholar 

  10. A. B. Kogan, “Probabilistic-statistical principles of neuronal organization of the brain functional systems,” Dokl. Akad. Nauk SSSR,154, No. 5, 1231–1233 (1964).

    Google Scholar 

  11. A. B. Kogan, Yu. I. Petunin, and O. G. Chorayan, “A study of the impulse activity of neurons by methods of the theory of stochastic processes,” Biofizika,11, No. 5, 887–893 (1966).

    Google Scholar 

  12. Information Concept and Biological Systems [Russian translation], Mir, Moscow (1966).

  13. J. Eccles, Physiology of Synapses, Springer-Verlag (1973).

  14. Problems of Bionics [in Russian], Nauka, Moscow (1967).

  15. W. R. Russel, Brain. Memory. Learning: A Neurologist's View, Clarendon Press, Oxford (1959).

    Google Scholar 

  16. C. P. Duncan, “The retroactive effect of electroshock on learning,” J. Comp. Physiol., No. 42, 32–44 (1949).

    Google Scholar 

  17. R. W. Gerard, “The fixation of experience,” in: CIOMS Symposium on Brain Mechanisms and Learning, J. F. Delafresnaye, A. Fessard, and J. Konorski, eds., Blackwell Scientific Publishers, Oxford (1961), pp. 21–35.

    Google Scholar 

  18. R. E. Ransmeier and R. W. Gerard, “Effects of temperature, convulsion, and metabolic factors on rodent memory and E.E.G.,” Am. J. Physiol., No. 179, 663–664 (1954).

    Google Scholar 

  19. M. Verzeano, Fifth International Congress on EEG and Clinical Neurophysiology, Rome, Italy, Sept. (1961), pp. 7–13.

  20. M. Verzeano and K. Negishi, “Neuronal activity in wakefulness and in sleep,” in: Nature of Sleep: Ciba Found. Symp. Little, Brown, and Co., Boston (1961), p. 108.

    Google Scholar 

  21. A. B. Kogan and O. G. Chorayan, “Features of the evolution of functional organization of the central nervous system,” Rev. Roum. Biol. Ser. Zool.,11, No. 2, 117–121 (1966).

    Google Scholar 

  22. F. Morel, “Storage of information in nervous systems,” in: Information Concept and Biological Systems [Russian translation], Mir, Moscow (1966), pp. 179–214.

    Google Scholar 

  23. A. Fessard, “Role of Neuronal networks in sensory information transmission,” in: Theory of Communication in Sensory Systems [Russian translation], Mir, Moscow (1964), pp. 81–99.

    Google Scholar 

  24. D. O. Hebb, The Organization of Behavior, Wiley, New York (1949).

    Google Scholar 

  25. R. Couteaux, “Principaux critéres morphologiques et cytochimiques utilisables aujourd'hu pour définir les divers types de synapses,” Actual. Neurophysiol., Ser. 3, 145–173 (1961).

    Google Scholar 

  26. E. G. Gray, “Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study,” J. Anat., No. 93, 420–433 (1959).

    Google Scholar 

  27. L. H. Hamlyn, “The structure of the mossy fibre endings in the hippocampus of the rabbit,” J. Anat., No. 96, 112–120 (1962).

    Google Scholar 

  28. V. V. Chavchanidze, N. D. Sergienko, and R. G. Gachechiladze, “Trace processes in the central nervous system,” Abstract of paper presented at the Republican Conference on Technical Cybernetics [in Russian], Tbilisi (1964).

  29. N. V. Antakova, I. K. Malinovskaya, and M. Yu. Ul'yanov, “Change in the synaptic apparatus of neuronal network in the frog spinal cord as a result of experimental action,” Abstract of paper presented at the All-Union Symposium on Applied Mathematics and Cybernetics [in Russian], Gorkii (1967).

  30. F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts (1969).

    Google Scholar 

  31. B. Katz, Nerve, Muscle, and Synapse, McGraw-Hill, New York (1966).

    Google Scholar 

  32. F. Rosenblatt, Principles of Neurodynamics [Russian translation], Mir, Moscow (1965).

    Google Scholar 

  33. W. K. Taylor, “Electrical simulation of some nervous system functional activities,” in: Proceedings of the Third London Symposium on Information Theory, Butterworths, London (1955), pp. 140–153.

    Google Scholar 

  34. W. Penfield and L. Roberts, Speech and Brain-Mechanisms, Princeton University, Princeton, New Jersey (1959).

    Google Scholar 

  35. T. A. Mering, Features of Closure of Conditioned-Reflex Association [Russian translation], Meditsina, Moscow (1967).

    Google Scholar 

  36. W. Feller, An Introduction to Probability Theory and Its Application, 3rd edn., Wiley, New York (1968).

    Google Scholar 

  37. F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  38. G. Somjen, Sensory Coding in Mammalian Nervous System, Appleton-Century-Croft, New York (1972).

    Google Scholar 

  39. S. Kuffler and J. Nicholls, From Neuron to Brain [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  40. T. N. Grechenenko, Neurophysiological Mechanisms of Memory [in Russian], Nauka, Moscow (1979).

    Google Scholar 

Download references

Authors

Additional information

Translated from Kibernetika, No. 2, pp. 119–129, March–April, 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min'ko, A.A., Petunin, Y.I. Mathematical modeling of short-term memory. Cybern Syst Anal 17, 287–298 (1981). https://doi.org/10.1007/BF01069647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01069647

Keywords

Navigation