Skip to main content
Log in

Finite penalty methods with linear approximation of the constraints. II

  • Published:
Cybernetics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. V. M. Panin, “Finite penalty methods with linear optimization of the constraints. Kibernetika, No. 2, 44–50 (1984).

    Google Scholar 

  2. A. V. Fiacco and G. P. McCormick, Nonlinear Programming, Wiley (1968).

  3. V. G. Karmanov, Mathematical Programming [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  4. K. Grossman and A. A. Kaplan, Nonlinear Programming Using Unconstrained Optimization [in Russian], Nauka, Novosibirsk (1981).

    Google Scholar 

  5. B. T. Polyak, An Introduction to Optimization [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  6. D. P. Bertsekas, “Enlarging the region of convergence of Newton's method for constrained optimization,” J. Optim. Theory Appl.,36, No. 2, 221–252 (1982).

    Google Scholar 

  7. D. Q. Maine and N. Maratos, “A first order, exact penalty function algorithm of equality constrained optimization problems,” Math. Progr.,16, No. 3, 303–325 (1979).

    Google Scholar 

  8. P. E. Gill and W. Murra (eds.), Numerical Methods for Constrained Optimization, Academic Press (1974).

  9. V. M. Panin, “Global convergence of the damped Newton's method in convex programming problems,” Dokl. Akad. Nauk SSSR,261, No. 4, 811–814 (1981).

    Google Scholar 

  10. D. Q. Maine and E. Polak, “A superlinearly convergent algorithm for constrained optimization problems,” Math. Progr. Study,16, 45–61 (1982).

    Google Scholar 

  11. U. M. Garsia-Palomares and O. L. Mangasarian, “Superlinearly convergent quasi-Newton methods for constrained optimization problems,” Math. Progr.,11, No. 1, 1–13 (1976).

    Google Scholar 

  12. S. P. Han, “Superlinearly convergent variable metric algorithms for general nonlinear programming problems,” Math. Progr.,11, No. 3, 263–282 (1976).

    Google Scholar 

  13. M. J. D. Powell, “Algorithms for nonlinear constraints that use Lagrangian functions,” Math. Progr.,14, No. 2, 224–248 (1978).

    Google Scholar 

  14. R. P. Fedorenko, Approximate Solution of Optimal Control Problems [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  15. Yu. M. Danilin, V. M. Panin, and B. N. Pshenichnyi, “A modified linearization method,” Kibernetika, No. 5, 70–73 (1982).

    Google Scholar 

  16. V. M. Panin and B. N. Pshenichnyi, “A parametric linearization method in mathematical programming problems,” Zh. Vychisl. Mat. Mat. Fiz.,23, No. 1, 61–72 (1983).

    Google Scholar 

  17. V. M. Panin, “Enlarging the region of convergence of some mathematical programming methods,” in: Theory of Optimal Decisions, Coll. Proc. [in Russian], Inst. Kibern. Akad. Nauk UkrSSR, Kiev (1982), pp. 9–15.

    Google Scholar 

  18. V. M. Panin, “Convergence bounds for two linearization methods,” Dokl. Akad. Nauk UkrSSR, No. 5, 77–79 (1984).

    Google Scholar 

  19. B. N. Pshenichnyi, The Linearization Method [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  20. V. M. Panin, “A gradient method with step adjustment in discrete minimax problems,” Dokl. Akad. Nauk UkrSSR, No. 12, 68–70 (1982).

    Google Scholar 

  21. R. E. Griffith and R. A. Stewart, “A nonlinear programming technique for the optimization of continuous processing systems,” Manag. Sci.,7, No. 4, 379–592 (1961).

    Google Scholar 

  22. V. M. Panin, “The convergence of the gradient method in constrained optimization problems,” in: Mathematical Methods for Optimization Problems, Coll. Proc. [in Russian], Inst. Kibern. Akad. Nauk UkrSSR, Kiev (1983), pp. 53–59.

    Google Scholar 

  23. G. D. Maistrovskii and Yu. G. Ol'khovskii, “On the rate of convergence of the fastest descent method in constrained optimization problem,” Zh. Vychisl. Mat. Mat. Fiz.,15, No. 4, 844–859 (1975).

    Google Scholar 

  24. V. A. Daugavet and V. N. Malozemov, “Quadratic convergence of a linearization method for discrete minimax problems,” Zh. Vychisl. Mat. Mat. Fiz.,21, No. 4, 835–843 (1981).

    Google Scholar 

  25. V. M. Panin, “On global convergence of second-order methods for the convex discrete minimax problem,” Kibernetika, No. 5, 95–99 (1980).

    Google Scholar 

  26. K. Madsen and H. Schjaer-Jacobson, “Linearly constrained minimax optimization,” Math. Progr.,14, No. 2, 208–223 (1978).

    Google Scholar 

Download references

Authors

Additional information

The first part of the paper was published in Cybernetics, No. 2 (1984).

Translated from Kibernetika, No. 4, pp. 73–81, July–August, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panin, V.M. Finite penalty methods with linear approximation of the constraints. II. Cybern Syst Anal 20, 556–566 (1984). https://doi.org/10.1007/BF01068931

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01068931

Keywords

Navigation