Skip to main content
Log in

Database models and closure operators

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

We consider functional dependency structures in relational databases. New results are obtained for closure operators of changing databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. E. F. Codd, “A relational model of data for large shared data banks”, Comm. ACM,13, 377–387 (1970).

    Google Scholar 

  2. W. Armstrong, “Dependency structures of data base relationships”, in: Information Processing '74, North-Holland, Amsterdam (1974), pp. 580–583.

    Google Scholar 

  3. J. Demetrovics and G. O. H. Katona, “Extremal combinatorial problems of database models”, in: Proc. 1st Symp. Math. Fund. of Database Syst., Springer, Berlin (1987), pp. 99–127.

    Google Scholar 

  4. P. Cohn, Universal Algebra, Harper and Row, New York (1965).

    Google Scholar 

  5. G. Burosch, J. Demetrovics, and G. O. H. Katona, “The poset of closures as a model of changing databases”, Order,4, 127–142 (1987).

    Google Scholar 

  6. G. Burosch, J. Demetrovics, G. O. H. Katona, D. J. Kleiman, and A. A. Sapozhenko, “On the number of closure operations and databases”, Preprint No. 4, Math. Inst., Budapest (1988).

    Google Scholar 

  7. J. Demetrovics and V. D. Thi, “Some results about functional dependencies”, Acta Cybern.,8, 273–278 (1988).

    Google Scholar 

  8. J. Demetrovics, Z. Füredi, and G. O. H. Katona, “Minimal matrix representations of closure operations”, Discr. Appl. Math.,11, 115–128 (1985).

    Google Scholar 

  9. G. Hencsey, “Selection of similar elements from information-description sets”, MTA SZATKI W.P., E-52, 133–142 (1988).

    Google Scholar 

  10. E. N. Kuznetsov, I. B. Muchnik, G. Hencsey, and N. F. Cskuaszely, “Monotone systems on data matrices”, MTA SZTAKI Közl.,31, 153–158 (1984).

    Google Scholar 

  11. L. O. Libkin, “On minimal systems of choice functions generating the main classes”, Avtomat. Telemekh., No. 12, 157–161 (1988).

    Google Scholar 

  12. L. O. Libkin and I. B. Muchnik, “On a subsemilattice-lattice of a semilattice”, MTA SZTAKI Közl.,39, 101–110 (1988).

    Google Scholar 

  13. L. O. Libkin and I. B. Muchnik, “Separatory subsemilattices and their properties”, MTA SZTAKI Közl.,39, 83–92 (1988).

    Google Scholar 

  14. L. O. Libkin and I. B. Muchnik, “Separatory subsemilattices and their properties”, MTA SZTAKI Tanulm., No. 6, 13–22 (1988).

    Google Scholar 

  15. A. Békéssy and J. Demetrovics “Contribution to the theory of data base relations”, Discr. Math.,27, 1–10 (1979).

    Google Scholar 

  16. G. Grätzer, General Lattice Theory, Academic Press, New York (1978).

    Google Scholar 

  17. A. B. Romanowska and J. D. H. Smith, “Bisemilattices of subsemilattices,” J. Algebra,70, 78–88 (1981).

    Google Scholar 

  18. J. Demetrovics, “On the equivalence of candidate keys with Sperner systems,” Acta Cybern.,4, 247–252 (1979).

    Google Scholar 

  19. V. A. Gurvich and L. O. Libkin, “Quasilinear set functions and absolute definite matrices” Avtomat. Telemekh., No. 12, 143–150 (1989).

    Google Scholar 

  20. M. Aigner, Combinatorial Theory, Springer, New York, (1979).

    Google Scholar 

  21. V. P. Soltan, An Introduction to Axiomatic Convexity Theory [in Russian], Shtiintsa, Kishinev (1984).

    Google Scholar 

  22. A. P. Huhn, “On nonmodular n-distributive lattices. 1. Lattices of convex sets”, Acta Sci. Math.,52, 35–45 (1988).

    Google Scholar 

  23. P. H. Edelman and R. E. Jamison, “The theory of convex geometries,” Geom. Dedic.,19, 247–270 (1985).

    Google Scholar 

  24. B. Korte and L. Lovasz “Shelling structures, convexity and a happy end,” in: Graph Theory and Combinatorics, Academic Press, New York (1984), pp. 217–232.

    Google Scholar 

  25. G. Birkhoff, Lattice Theory, AMS, New York (1948).

    Google Scholar 

  26. I. Rival, “Maximal sublattices of finite distributive lattices” Proc. AMS,44, 263–268 (1974).

    Google Scholar 

  27. C. J. Ashman and V. Ficker, “Families of sets on a finite set,” J. Aust. Math. Soc., Ser. A,37, 405–412 (1984).

    Google Scholar 

  28. M. A. Aizerman, “Some new problems of general choice theory (a survey of one line of research)” Avtomat. Telemekh., No. 9, 5–43 (1984).

    Google Scholar 

  29. L. O. Libkin, “Algebraic methods of construction and analysis of classes of choice functions,” Tr. Vses. Nauchno-Issled. Inst. Sanit. Ispyt., No. 14, 46–53 (1987).

    Google Scholar 

  30. V. D. Thi, “Minimal keys and antikeys,” Acta Cybern.,7, 361–371 (1986).

    Google Scholar 

  31. D. Higgs, “Comparison to Grillet's theorem on maximal chains and antichains,” Order,1, 371–375 (1985).

    Google Scholar 

  32. L. O. Libkin, “Separation theorems for lattices,” MTA SZTAKI Közl.,39, 93–100 (1988).

    Google Scholar 

Download references

Authors

Additional information

This study was supported by the Hungarian Foundation for Scientific Research (Grant 1066).

Translated from Kibernetika, No. 1, pp. 40–50, January–February, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demetrovic, J., Libkin, L.O. & Muchnik, I.B. Database models and closure operators. Cybern Syst Anal 27, 53–67 (1991). https://doi.org/10.1007/BF01068647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01068647

Keywords

Navigation