Skip to main content
Log in

Propranolol pharmacodynamic modeling using unbound and total concentrations in healthy volunteers

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

In an attempt to evaluate the propranolol (P) concentration-effect relationship, percentage reduction in exercise heart rate was modeled as a function of unbound and total P concentrations using the linear, E max ,and sigmoid E max models. Nine volunteers underwent repeated treadmill exercise tests over 48 hr during a control period, after receiving 160 mg of P orally and again after receiving 160 mg once daily for 7 days. Beta blockade was assessed as the percentage reduction in exercise heart rate compared to control. Total serum P concentrations were determined by HPLC and unbound fractions by equilibrium dialysis. Using nonlinear least-squares regression, the E max model was best in describing the concentration-effect relationship in each subject. Mean parameters for combined single dose and steady state were E max 33.6±4.5% and EC50 18.2±15.6ng/ml for total P and E max 33.5±4.3% and EC50 1.66±1.56 for unbound P. Model fits were not significantly better for unbound versus total P and EC50 values showed similar intersubject variability. The observed unbound EC50 values are consistent with reported receptor dissociation constants. Therefore the large intersubject variability in EC50 could not be accounted for by variability in P protein binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Svensson, M. N. Woodruff, and D. Lalka. Influences of protein binding and use of unbound drug concentrations. In W. E. Evans, J. J. Schentag, and W. J. Jusko (eds.),Applied Pharmacokinetics, 2nd ed., Applied Therapeutics Inc., Spokane, WA, 1986, pp. 187–219.

    Google Scholar 

  2. M. Yasuhara, J. Fujiwara, S. Kitade, H. Katayama, K. Okumura, and R. Hori. Effect of altered plasma protein binding on pharmacokinetics and pharmacodynamics of propranolol in rats after surgery: Role of alpha-1-acid glycoprotein.J. Pharmacol. Exp. Ther. 235:513–520 (1985).

    CAS  PubMed  Google Scholar 

  3. J. D. Huang and S. Øie. Effect of altered disopyramide binding on its pharmacologic response in rabbits.J. Pharmacol. Exp. Ther. 223:469–471 (1982).

    CAS  PubMed  Google Scholar 

  4. D. G. McDevitt, M. Frisk-Holmberg, J. W. Hollifield, and D. G. Shand. Plasma binding and the affinity of propranolol for a beta receptor in man.Clin. Pharmacol. Ther. 20:152–157 (1976).

    CAS  PubMed  Google Scholar 

  5. E. Perucca, R. Grimaldi, G. Gatti, M. Caravaggi, F. Crema, S. Lecchini, and G. M. Frigo. Pharmacokinetic and pharmacodynamic studies with a new controlled-release formulation of propranolol in normal volunteers: a comparison with other commercially available formulations.Brit. J. Clin. Pharmacol 18:37–43 (1984).

    Article  CAS  Google Scholar 

  6. C. Chidsey, M. Pine, L. Favrot, S. Smith, G. Leonetti, P. Morselli, and A. Zanchetti. The use of drug concentration measurements in studies of the therapeutic response to propranolol.Postgrad. Med. J. 52(Suppl. 4):26–32 (1976).

    CAS  PubMed  Google Scholar 

  7. D. J. Coltart and D. G. Shand. Plasma propranolol levels in the quantitative assessment of beta-adrenergic blockade in man.Brit. Med. J. 3:731–734 (1970).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. J. McAinish, N. S. Baber, R. Smith, and J. Young. Pharmacokinetic and pharmacodynamic studies with long-acting propranolol.Brit. J. Clin. Pharmacol. 6:115–121 (1978).

    Article  Google Scholar 

  9. M. Wood, D. G. Shand, and A. J. J. Wood. Altered drug binding due to use of indwelling heparinized cannulas (heparin lock) for sampling.Clin. Pharmacol. Ther. 25:103–107 (1979).

    CAS  PubMed  Google Scholar 

  10. M. W. Lo, B. Silber, and S. Riegelman. An automated HPLC method for the assay of propranolol and its basic metabolites in plasma and urine.J. Chromatogr. Sci. 183:126–131 (1982).

    Article  Google Scholar 

  11. J. Huang. Errors in estimating the unbound fraction of drugs due to the volume shift in equilibrium dialysis.J. Pharm. Sci. 72:1368–1369 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. N. H. G. Holford and L. B. Sheiner. Kinetics of pharmacologic response.Pharmacol. Ther. 16:143–166 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. C. M. Metzler and D. L. Weiner.PCNONLIN User's Guide, Statistical Consultants Inc., Lexington, MA, 1984.

    Google Scholar 

  14. H. Akaike. An information criterion.Math. Sci. 14(153):5–9 (1976).

    Google Scholar 

  15. E. M. Landaw and J. J. DiStephano III. Multiexponential, multicompartmental and noncompartmental modeling. II. Data analysis and statistical considerations.Am. J. Physiol. 246:R665–677 (1984).

    CAS  PubMed  Google Scholar 

  16. R. J. Straka, R. L. Lalonde, J. A. Pieper, M. B. Bottorff, and D. M. Mirvis. Nonlinear pharmaeokinetics of unbound propranolol after oral administration.J. Pharm. Sci. 76:521–524 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. D. G. McDevitt and D. G. Shand. Plasma concentration and time-course of beta-blockade due to propranolol.Clin. Pharmacol Ther. 18:708–713 (1975).

    CAS  PubMed  Google Scholar 

  18. T. D. Bjornsson, J. R. Brown, and C. Tschanz. Importance of radiochemical purity of radiolabeled drugs used for determining plasma protein binding of drugs.J. Pharm. Sci. 70:1372–1373 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. A. Goldstein, L. Aronow, and S. H. Kalman.Principles of Drug Action: The Basis of Pharmacology. Wiley, New York, 1974, pp. 82–89.

    Google Scholar 

  20. O. E. Bradde, K. Karad, H. R. Zerkowski, N. Rohm, and J. C. Reidemeister. Coexistence of beta-1 and beta-2 adrenoceptors in human right atrium.Circ. Res. 53:752–758 (1983).

    Article  Google Scholar 

  21. H. Harms. Isoproterenol antagonism of cardioselective beta adrenergic receptor blocking: A comparative study of human and guinea-pig cardiac and bronchial beta adrenergic receptors.J. Pharmacol. Exp. Ther. 19:329–335 (1976).

    Google Scholar 

  22. J. F. Mullane, J. Kaufman, D. Duornik, and J. Coelho. Propranolol dosage, plasma concentration, and beta-blockade.Clin. Pharmacol. Ther. 32:692–700 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. J. G. Wagner. Kinetics of pharmacologic response.J. Theoret. Biol. 20:173–201 (1968).

    Article  CAS  Google Scholar 

  24. R. Platzer, R. L. Galeazzi, W. Neiderberger, and J. Rosenthaler. Simultaneous modeling of bopindolol kinetics and dynamics.Clin. Pharmacol. Ther. 36:5–13 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalonde, R.L., Straka, R.J., Pieper, J.A. et al. Propranolol pharmacodynamic modeling using unbound and total concentrations in healthy volunteers. Journal of Pharmacokinetics and Biopharmaceutics 15, 569–582 (1987). https://doi.org/10.1007/BF01068413

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01068413

Key words

Navigation