Skip to main content
Log in

Commingling and segregation analysis of reading performance in families of normal reading probands

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

This paper reports the results of commingling and genetic segregation analyses performed on a quantitative reading phenotype in 125 families ascertained through normal, nondisabled readers. Commingling analysis using SKUMIX suggested that the reading phenotype best fit a skewed, single distribution model. Complex segregation using POINTER was then performed on the power adjusted data. While there were some analytical ambiguities and complexities, the segregation analysis indicated that there was familial transmission of the phenotype and that a significant percentage of the variance in this phenotype could be attributed to a major gene with dominance. Because the estimated frequency of the putative dominant allele is 35, 57% of the population would carry at least one copy of this allele. This common allele, with low penetrance, accounted for 54% of the phenotypic variance in reading scores. These findings are considered in the context of our earlier report of major gene influence on a qualitative dyslexic phenotype in a sample of 133 dyslexic proband families that were originally matched to the present sample of control families (Penningtonet al., 1991). The applicability of a classic single gene, multifactorial-polygenic, and oligogenic or QTL models for reading ability/disability is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Akaike, H. (1974). A new look at the statistical model identification.IEEE Trans. Auto. Control,19(6):716–722.

    Google Scholar 

  • Akaike, H. (1987). Factor analysis and AIC.Psychometrika 52(3):317–332.

    Google Scholar 

  • Ashton, G. C., Polovina, J. J., and Vandenberg, S. G. (1979). Segregation analysis of family data for 15 tests of cognitive ability.Behav. Genet. 9:329–348.

    Google Scholar 

  • Borecki, I. B., and Ashton, G. C. (1984). Evidence for a major gene influencing performance on a vocabulary test.Behav. Genet. 14:63–79.

    Google Scholar 

  • DeFries, J. C. (1985). Colorado Reading Project. In Gray, D. B., and Kavanagh, J. F. (eds.),Biobehavioral Measures of Dyslexia, York Press, Pakton, MD, pp. 107–122.

    Google Scholar 

  • DeFries, J. C., and Gillis, J. J. (1993). Genetics of reading disability. In Plomin, R., and McClearn, G. (eds.),Nature, Nurture & Psychology, APA Press, Washington, DC.

    Google Scholar 

  • DeFries, J. C., and Hegman, J. P. (1970). Genetic analysis of open-field behavior. In Lindaey, G., and Thiessen, D. D. (eds.),Contributions to Behavior-Genetic Analysis—The Mouse as a Prototype, Meridith Corp., New York.

    Google Scholar 

  • DeFries, J. C., Vogler, G., and LaBuda, M. C. (1986). Colorado Family Reading Study: An overview. In Fuller, J. L., and Simmel, E. C. (eds.),Perspectives in Behavior Genetics, Lawrence Erlbaum, Hillsdale, NJ, pp. 29–56.

    Google Scholar 

  • DeFries, J. C., Olson, R. K., Pennington, B. F., and Smith, S. D. (1991). Colorado Reading Project: An update. In Duane, D. D., and Gray, D. B. (eds.),The Reading Brain: The Biological Basis of Dyslexia, York Press, Parkton, MD.

    Google Scholar 

  • Demenais, F., and Abel, L. (1989). Robustness of the unified model to shared environmental effects in the analysis of dichotomous traits.Genet. Epidemiol. 6:229–269.

    Google Scholar 

  • Demenais, F., Lathrop, M., and Lalouel, J. M. (1986). Robustness and power of the unified model in the analysis of quantitative measurements.Am. J. Hum. Genet. 38: 228–234.

    Google Scholar 

  • Devor, E. J. (1993). Why there is no gene for alcoholism.Behav. Genet. 23:145–152.

    Google Scholar 

  • Duane, D. D. (1989). Neurobiological correlates of learning disorders.J. Am. Acad. Child Adoles. Psychiat. 28:314–322.

    Google Scholar 

  • Dunn, L. M., and Markwardt, F. C., Jr. (1970).Manuat for the Peabody Individual Achievement Test, American Guidance Service, Circle Pine, MN.

    Google Scholar 

  • Eaves, L. J. (1983). Errors of inference in the detection of major gene effects on psychological test scores.Am. J. Hum. Genet. 35:1179–1189.

    Google Scholar 

  • Fain, P. R., Spuhler, K. P., and Kimberling, W. J. (1986). Quantitative genetics and learning disabilities. In Smith, S. (ed.),Genetics and Learning Disabilities, College Hill Press, San Diego, CA.

    Google Scholar 

  • Fulker, D. W., Cardon, L. R., DeFries, J. C., Kimberling, W. J., Pennington, B. F., and Smith, S. D. (1991). Multiple regression analysis of sib-pair data on reading to detect quantitative trait loci.Read. Writ. Interdis. J. 3:299–313.

    Google Scholar 

  • Gelderman, H. (1975). Investigations on inheritance of quantitative characters in animals by gene markers. I. Methods.Theoret. Appl. Genet. 46:319–330.

    Google Scholar 

  • Gilger, J. W. (1991). Differential assortative mating found for academic and demographic variables as a function of time of assessment.Behav. Genet. 21:131–150.

    Google Scholar 

  • Gilger, J. W., Borecki, I. B., DeFries, J. C., Smith, S. D., and Pennington, B. F. (1993). Etiology of extreme scores for complex phenotypes: An illustration using reading performance (in review).

  • Go, R. C. P., Elston, R. C., and Kaplan, E. B. (1978) Efficiency and robustness of pedigree segregation analysis.Am. J. Hum. Genet. 30:28–37.

    Google Scholar 

  • Greenberg, D. A. (1993). Linkage analysis of “Necessary” disease loci versus “Susceptibility” loci.Am. J. Hum. Genet. 52:135–143.

    Google Scholar 

  • Johson, T. E., DeFries, J. C., and Markel, P. D. (1992). Mapping quantitative trait loci for behavioral traits in the mouse.Behav. Genet. 22:635–653.

    Google Scholar 

  • Kwon, J. M., Boehnke, M., Burns, T. L., and Moll, P. P. (1990). Commingling and segregation analysis: Comparison of results from a simulation study of a quantitative trait.Genet. Epidemiol. 7:57–68.

    Google Scholar 

  • Lalouel, J. M., and Morton, N. E. (1981). Complex segregation analysis with pointers.Hum. Hered. 31:312–321.

    Google Scholar 

  • Lalouel, J. M., Rao, D. C., Morton, N. E., and Elston, R. C. (1984). A unified model for complex segregation analysis.Am. J. Hum. Genet. 35:816–826.

    Google Scholar 

  • Lander, E. S., and Botstein, D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics 121:185–199.

    Google Scholar 

  • MacLean, C. J., Morton, N. E., Elston, R. C., and Yee, S. (1976). Skewness in commingled distributions.Biometrics 32:694–699.

    Google Scholar 

  • McClearn, G. E., Plomin, R., Gora-Maslak, G., and Crabbe, J. C. (1991). The gene chase in behavioral science.Psychol. Sci. 2(4):222–229.

    Google Scholar 

  • McGuffin, P., and Huckle, P. (1990). Simulation of Mendelism revisited: The recessive gene for attending medical school.Am. J. Hum. Genet. 46:994–999.

    Google Scholar 

  • Moldin, S. O., Rice, J. P., Gottesman, I., and Erlenmeyer-Kimling, L. (1990). Transmission of a psychometric indicator for liability to schizophrenia in normal families.Genet. Epidemiol. 7(2):163–176.

    Google Scholar 

  • Morton, N. E., and MacLean, C. J. (1974). Analysis of family resemblance. III. Complex segregation of quantitative traits.Am. J. Hum. Genet. 26:489–503.

    Google Scholar 

  • Olson, R. K., Forsberg, H., and Wise, B. (1994). Genes, environment, and the development of orthographic skills. In Berninger, V. W. (ed.),The Varieties of Orthographic Knowledge I: Theoretical and Developmental Issues, Kluwer Press, Dordrecht (in press).

    Google Scholar 

  • Pennington, B. F., Gilger, J. W., Pauls, D., Smith, S. A., Smith, S., and DeFries, J. C. (1991). Evidence for major gene transmission of developmental dyslexia.JAMA 266(11): 527–1534.

    Google Scholar 

  • Pennington, B. F., Gilger, J. W., Olson, R., and DeFries, J. (1992). External validity of age versus IQ discrepant diagnoses in reading disability: Lessons from a twin study.J. Learn. Dis. 25:562–573.

    Google Scholar 

  • Plomin, R. (1990). The role of inheritance in behavior.Science 248:183–248.

    Google Scholar 

  • Plomin, R., and Rende, R. (1991). Human behavioral genetics.Annu. Rev. Psychol. 42:1–66.

    Google Scholar 

  • Plomin, R., DeFries, J. C., and McClearn, G. E. (1990).Behavioral Genetics: A Primer, 2nd ed., W. H. Freeman, New York.

    Google Scholar 

  • Reich, T., Rice, J., and Cloninger, C. R. (1981). The detection of major locus in the presence of multifactorial variation. In Gershon, E. S., Matthysse, S., Breakefield, X. O., and Ciaranello, R. D. (eds.),Genetic Research Strategies in Psychobiology and Psychiatry, Boxwood Press, Pacific Grove, CA, pp. 353–368.

    Google Scholar 

  • Smith, S. D., Kimberling, W. J., and Pennington, B. F. (1991). Screening for multiple genes influencing dyslexia.Read. Writ. Interdis. J. 3:285–298.

    Google Scholar 

  • Stevenson, J., and Freedman, G. (1990). The social environment correlates of reading ability.J. Child Psychol. Psychiat. Allied Dis. 31:681–698.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Gilger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilger, J.W., Borecki, I.B., DeFries, J.C. et al. Commingling and segregation analysis of reading performance in families of normal reading probands. Behav Genet 24, 345–355 (1994). https://doi.org/10.1007/BF01067536

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067536

Key Words

Navigation