Behavior Genetics

, Volume 23, Issue 4, pp 395–403 | Cite as

Elevated dark-adapted thresholds in hypopigmented mice measured with a water maze screening apparatus

  • Jennifer M. Hayes
  • Grant W. Balkema
Article

Abstract

In previous electrophysiological experiments from hypopigmented animals (mice, rats, rabbits), single-unit recordings from both retinal ganglion axons and cells in the superior colliculus have demonstrated an increase in threshold in the dark-adapted state which is roughly proportional to the ocular melanin concentration. In the present study we compared an albino mouse strain which is relatively resistant to light damage and the beige mouse mutant to their wild-type controls in a situation that involved unanesthetized, unrestrained mice as a control to the electrophysiological single unit experiments. We used a six-chambered water maze. Animals were trained to swim to an illuminated ramp until their performances leveled off (about 10 days). The animals were then dark-adapted for 24 h and tested after reducing the luminance level of the water maze. We found that the albino mice failed to find the ramp when the luminance fell to 1.58×10−3 cd/m2 (p≤.0001), the beige mice failed at 2.00×10−4 cd/m2 (p≤.0001), and the normally pigmented controls performed to 5.00×10−5 cd/m2 (p≤.0001). These results support our previous findings that the sensitivity defect in hypopigmented animals is proportional to the degree of ocular hypopigmentation.

Key Words

Hypopigmentation albino adaptation retinal degeneration beige mouse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balkema, G. W. (1988). Elevated dark-adapted thresholds in albino rodents.Invest. Ophthalmol. Vis. Sci. 29:544–554.Google Scholar
  2. Balkema, G. W., and Dräger, U. C. (1990). Origins of uncrossed retinofugal projections in normal and hypopigmented mice.Vis. Neurosci. 4:594–604.Google Scholar
  3. Balkema, G. W., and Dräger, U. C. (1991). Impaired visual thresholds in hypopigmented animals.Vis. Neurosci. 6:557–585.Google Scholar
  4. Balkema, G. W., and Pinto, L. H. (1982). Electrophysiology of retinal ganglion cells in the mouse: A study of a normally pigmented mouse and a congenic hypopigmentation mutant, pearl.J. Neurophysiol. 48:968–980.Google Scholar
  5. Balkema, G. W., Mangini, N. J., and Pinto, L. H. (1983). Discrete visual defects in pearl mutant mice.Science 219:1085–1087.Google Scholar
  6. Balkema, G. W., Mangini, N. J., Pinto, L. H., and Vanable, J. W., Jr. (1984). Visually evoked eye movements in mouse mutants and inbred strains. A screening report.Invest. Ophthalmol. Vis. Sci.,25:795–800.Google Scholar
  7. Balkema, G. W., Pinto, L. H., Dräger, U. C., and Vanable, J. W., Jr. (1981). Characterization of abnormalities in the visual system of the mutant mouse pearl.J. Neurosci. 1:1320–1329.Google Scholar
  8. Cone, R. A. (1963). Quantum relations of rat electroretinogram.J. Gen. Physiol. 46:1267–1286.Google Scholar
  9. Creel, D. J., Conlee, J. W., and King, R. A. (1990). Dark adaptation in human albinos,Clin. Vision Sci. 5:81–85.Google Scholar
  10. Dodt, E., and Echte, K. (1961). Dark and light adaptation in pigmented and white rat as measured by electroretinogram threshold.J. Neurophysiol. 24:427–445.Google Scholar
  11. Graves, A. L., and Green, D. G. (1985). Light exposure can reduce selectively or abolish the C-wave of the albino rat electroretinogram.Invest. Ophthalmol. Vis. Sci. 26:388–393.Google Scholar
  12. Green, D. G. (1971). Light adaptation in the rat retina: Evidence for two receptor mechanisms.Science 174:598–600.Google Scholar
  13. Green, D. G., and Powers, M. K. (1982). Mechanisms of light adaptation in rat retina.Vision Res. 22:209–216.Google Scholar
  14. Green, D. G., de Tejada, P. H., and Glover, M. J. (1991). Are albino rats night blind?Invest Ophthalmol. Vis. Sci. 32:2366–2371.Google Scholar
  15. Hayes, J. M., and Balkema, G. W. (1993). Visual thresholds in mice: Comparison of retinal light damage and hypopigmentation.Vis. Neurosci. 10: (In Press).Google Scholar
  16. Hellner, K. A. (1966). Das adaptive verhalten der mausenetzhaut.Arch. Ophthalmol. 169:166–175.Google Scholar
  17. La Vail, J. H., Nixon, R. A., and Sidman, R. L. (1978). Genetic control of retinal ganglion cell projections.J. Comp. Neurol. 182:399–421.Google Scholar
  18. La Vail, M., Gorrin, G. M., Repaci, M. A., Thomas, L. A., and Ginsberg, H. M. (1987). Genetic regulation of light damage to photoreceptors.Invest. Ophthalmol. Vis. Sci. 28:1043–1048.Google Scholar
  19. Linden, R., and Pinto, L. H. (1985). Developmental genetics of the retina: Evidence that the pearl mutation in the mouse affects the time course of natural cell death in the ganglion cell layer.Exp. Brain. Res. 60:79–86.Google Scholar
  20. Mangini, N. J., Vanable, J. W., Williams, M. W., and Pinto, L. H. (1985). The optokinetic nystagmus and ocular pigmentation of hypopigmentation mouse mutants.J. Comp. Neurol. 241:191–209.Google Scholar
  21. Noell, W. K. (1980). There are different kinds of retinal damage in the rat. In Williams, R. P. and Baker, B. N. eds.The Effects of Constant Light on Visual Processes, Plenum Press, New York, pp. 357–387.Google Scholar
  22. Noell, W. K., Walker, V. S., Kang, B. S., and Berman, S. (1966). Retinal damage by light in rats.Invest. Ophthal. 5:450–473.Google Scholar
  23. Pak, M. W., Giolli, R. A., Pinto, L. H., Mangini, N. J., Gregory, K. M., and Vanable, J. W. (1987). Retinopretectal and accessory optic projections of normal mice and the OKN-defective mutant mice beige, beige-J, and pearl.J. Comp. Neurol. 258:435–446.Google Scholar
  24. Sanderson, K. J., Guillery, R. W., and Shackelford, R. M. (1974). Congenitally abnormal visual pathways in mink (Mustela vision) with reduced retinal pigment.J. Comp. Neurol. 154:225–248.Google Scholar
  25. Shatz, C. J., and Kliot, M. (1982). Prenatal misrouting of the retino-geniculate pathway in Siamese cats.Nature 300:525–529.Google Scholar
  26. Suzuki, H., and Pinto, L. H. (1986). Response properties of horizontal cells in the isolate retina of wild-type and pearl mutant mice.J. Neurosci. 6:1122–1128.Google Scholar
  27. Williams, M. A., Gehrson, J., Fisher, L. J., and Pinto, L. H. (1985a). Synaptic lamellae of the photoreceptors of pearl and wild-type mice.Invest. Ophthalmol Vis. Sci. 26:992–1001.Google Scholar
  28. Williams, M. A., Pinto, L. H., and Gehrson, J. (1985b). The retinal pigment epithelium of wild-type (C57BL/6J +/+) and pearl mutant (C57BL/6J pe/pe) mice.Invest. Ophthalmol. Vis. Sci. 26:657–669.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Jennifer M. Hayes
    • 1
  • Grant W. Balkema
    • 1
  1. 1.Biology DepartmentBoston CollegeChestnut Hill

Personalised recommendations