Skip to main content
Log in

Quadrupole mass filtering for registration of blood gas partial pressures

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

With a newly developed quadrupole mass spectrometer several blood gas partial pressures are recorded simultaneously and continuously. In the mass filter the separation of the ions to be detected takes place in a hyperbolic electric field with variable direct and alternating voltages with a constant frequency of 2.4 MHz.

For blood gas analysis a fully relaxed experimental animal was artificially ventilated and provided with arterial and venous catheters. Each catheter consisted flexible steel tubing (external diameter 0.6 mm) slotted near the end and covered with a silicone rubber membrane. The distance from the measuring tip to the mass spectrometer was 150 cm. Experiments with blood, in vivo equilibrated with gas mixtures, showed good reproducibility; the mean error of the helium partial pressure, for example, was less than 4%.

During respiration using a gas mixture with 40% argon, the time constantt 63% was found to be 55 s for the whole experimental arrangement including the experimental animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht, H., Schaldach, M.: Ramanspektrometrische Gas-Partialdruckbestimmung für eine kontinuierliche Überwachung der Blut- und Atemgase. Biomed. Techn.20 (Ergzbd.), 119–120 (1975)

    Google Scholar 

  2. Anlinger, F., Franke, G., Habfast, K., Kienitz, H., Spiteller, G.: Massenspektrometrie (H. Kienitz, ed.). Weinheim: Verlag Chemic 1968

    Google Scholar 

  3. Becker, H., Behrens, D., Hellige, D., Hensel, I., Kettler, D., Martel, J., Bretschneider, H. J.: Messung der Organdurchblutung mit Helium durch massenspektrometrischen Nachweis. Verh. dtsch. Ges. Kreisl.-Forsch.39, 263–267 (1973)

    Google Scholar 

  4. Beste, K.-W.: Diffusionsprozesse an künstlichen Membranen und massenspektrometrischer Nachweis. Biomed. Techn.19, 234–239 (1974)

    Google Scholar 

  5. Beste, K.-W., Hellige, G., Hensel, I., Schenk, H.-D., Bretschneider, H. J.: Messung von Blutgaspartialdrucken in vivo mit einer Massenspektrometer-Sonde im blutdurchströmten Gefäß. Biomed. Techn.21, 86–91 (1976)

    Google Scholar 

  6. Brantigan, J. W.: Accuracy of clinical blood gas measurements. J. Amer. med. Ass.229, 1923 (1974)

    Google Scholar 

  7. Brantigan, J. W., Dunn, K. L., Albo, D.: A clinical catheter for continuous blood gas measurement by mass spectrometry. personal communication (1976)

  8. Brantigan, J. W., Gott, V. L., Martz, M. N.: A Teflon membrane for measurement of blood and intramyocardial gas tensions by mass spectroscopy. J. appl. Physiol.32, 276–282 (1972)

    Google Scholar 

  9. Brantigan, J. W., Gott, V. L., Vestal, M. L., Fergusson, G. J., Jonston, W. H.: A nonthrombogenic diffusion membrane for continuous in vivo measurement of blood gases by mass spectrometry. J. appl. Physiol.28, 375–377 (1970)

    Google Scholar 

  10. Brantigan, J. W., Perna, A. M., Gordner, T. J., Gott, V. L.: Intramyocardial gas tensions in the canine heart during anoxic cardiac arrest. Surgery, Gynec. Obstet.134, 67–72 (1972)

    Google Scholar 

  11. Brunnée, C., Voshage, H.: Massenspektrometrie. München: Thiemig 1964

    Google Scholar 

  12. Homer, L. D., Denysyk, B.: Estimation of cardiac output by analysis of respiratory gas exchange. J. appl. Physiol.39, 159–165 (1975)

    Google Scholar 

  13. Huber, W. K.: Quadrupol-Massenspektrometer und deren Anwendung. Tg.-Beitrag “Moderne Methoden der Massenspektrometrie”, Stuttgart-Esslingen, pp. 1–18 (1973)

  14. Jenden, D. J., Silverman, R. W.: A multiple specific ion detector and analog data processor for a gas chromatograph/quadrupole mass spectrometer system. J. Chromatogr. Sci.11, 601–606 (1973)

    Google Scholar 

  15. Kety, S. S.: The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev.3, 1–41 (1951)

    Google Scholar 

  16. Löllgen, H., v. Nieding, G., Krekeler, H., Smidt, U.: Mass spectrometric determination of partial pressures of gases in liquids. Pneumonologie151, 292–294 (1975)

    Google Scholar 

  17. Muysers, K., Smidt, U.: Respirations-Massenspektrometrie. III. B. Auswertung von Massenspektren und monoisotopischen Analysen. Stuttgart: Schattauer 1969

    Google Scholar 

  18. v. Nieding, G., Schuy, K. D., Krekeler, H., Muysers, K.: Mass spectrometric determination of gas contents in microvolumes of liquids. A novel gas equilibration method. Pflügers Arch.335, R 31, 61 (1972)

    Google Scholar 

  19. Nishi, I.: A mass spectrometric system equipped with multicollectors and peak selectors for continuous gas analysis. Mass Spectrosc.22, 15–23 (1974)

    Google Scholar 

  20. Nishi, I., Sugai, S., Kimura, K.: Precision and Accuracy of mass spectrometer analysis in the direct gas inlet system (Fundamental consideration for respiratory gas analysis). Jap. J. appl. Physiol., Suppl.2, 163–166 (1974)

    Google Scholar 

  21. v. Oertzen, H.-D.: Der Verteilungskoeffizient von Argon zwischen Myocard und Blut sowie zwischen Niere und Blut. Diss., Göttingen 1972

  22. Rau, G.: Messung der Koronardurchblutung mit der Argon-Fremdgasmethode. Arch. Kreisl.-Forsch.58, 322–398 (1969)

    Google Scholar 

  23. Roth, E. M.: Physical chemistry of Inert Gases. Part III/1 from “Space-Cabin Atmospheres”, pp. 1–9. Washington 1967

  24. Turney, St. Z., McAslan, T. C., Cowley, R. A.: The continuous measurement of pulmonary gas exchange and mechanics. Ann. thorac. Surg.13, 229–242 (1972)

    Google Scholar 

  25. Wagner, P. D., Laravuso, R. B., Uhl, R. R., West, J. B.: Continuous distributions of ventilation-perfusion ratios in normal subjects breathing air and 100% O2. J. clin. Invest.54, 54–68 (1974)

    Google Scholar 

  26. Wagner, P. D., Naumann, P. F., Laravuso, R. B.: Simultaneous measurement of eight foreign gases in blood by gas chromatography. J. appl. Physiol.36, 600–605 (1974)

    Google Scholar 

  27. Wagner, P. D., Saltzman, H. A., West, J. B.: Measurement of continuous distributions of ventilation-perfusion ratios: theory. J. appl. Physiol.36, 588–599 (1974)

    Google Scholar 

  28. Wald, A., Massia, V. D. B.: Principles of gas analysis of interest to anesthesiologists. N. Y. St. J. Med.65, 1859–1870 (1965)

    Google Scholar 

  29. Wald, A., Hass, W. K., Ransoloff, J.: Tutorial: Experience with a mass spectrometer system for blood gas analysis in humans. J. Ass. Advanc. med. Instrum.5, 325–342 (1971)

    Google Scholar 

  30. Woldring, S.: Tutorial: Biomedical application of mass spectrometry for monitoring partial pressures. J. Ass. Advanc. med. Instrum.4, 43–56 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Bundesministerium für Forschung und Technologie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beste, K.W., Duchanova, H., Hellige, G. et al. Quadrupole mass filtering for registration of blood gas partial pressures. Pflugers Arch. 365, 249–255 (1976). https://doi.org/10.1007/BF01067025

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067025

Key words

Navigation