Skip to main content
Log in

Role of RNA and protein in memory storage: A review

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The literature on the possible role of RNA and protein in long-term memory is reviewed in terms of the following five criteria: (1) The molecule should have a defined role in normal brain function. (2) There should be a quantitative and/or qualitative change in the molecule as a function of learning. (3) The molecule should lead to some type of relatively permanent change in the functioning of the brain. (4) Altered synthesis or utilization of the molecule should lead to predictable consequences for memory. (5) The localization of the response should be consistent in terms of the utilization of that portion of the brain in the particular task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adair, L. B., Wilson, J. E., and Glassman, E. (1968a). Brain function and macromolecules: IV. Uridine incorporation into polysomes of mouse brain during different behavioral experiences.Proc. Natl. Acad. Sci. 61: 917–922.

    Google Scholar 

  • Adair, L. B., Wilson, J. E., Zemp, J. W., and Glassman, E. (1968b). Brain function and macromolecules: III. Uridine incorporation into polysomes of mouse brain during short-term avoidance conditioning.Proc. Natl. Acad. Sci. 61: 606–613.

    Google Scholar 

  • Adey, W. R., Dunlop, C. W., and Hendrik, C. E. (1960). Hippocampal slow wave: Distribution and phase relationships in the course of approach learning.Arch. Neurol. 3: 74–90.

    Google Scholar 

  • Agranoff, B. W. (1967). Memory and protein synthesis. Sci. Am.216: 115–122.

    Google Scholar 

  • Agranoff, B. W. (1969). Recent studies on the stages of memory formation in goldfish. In Byrne, W. L., (ed.),Molecular Approaches to Learning and Memory, Academic Press, New York, pp. 35–39.

    Google Scholar 

  • Agranoff, B. W. (1970). Protein synthesis and memory formation. In Lajtha, A. (ed.),Protein Metabolism in the Nervous System, Plenum Press, New York, pp. 533–541.

    Google Scholar 

  • Agranoff, B. W., and Klinger, P. D. (1964). Puromycin effect on memory fixation in the goldfish.Science 146: 952–953.

    Google Scholar 

  • Agranoff, B. W., Davis, R. E., and Brink, J. J. (1965). Memory fixation in the goldfish.Proc. Natl. Acad. Sci. 54: 788–793.

    Google Scholar 

  • Agranoff, B. W., Davis, R. E., Casola, L., and Lim, R. (1967). Actinomycin-D blocks formation of memory of shock-avoidance in goldfish.Science 158: 1600–1601.

    Google Scholar 

  • Allen, D. W., and Zamecnik, P. C. (1962). The effect of puromycin on rabbit reticulocyte ribosomes.Biochim. Biophys. Acta 55: 865–894.

    Google Scholar 

  • Altman, J. (1962). Are new neurons formed in the brains of adult mammals?Science 135: 1127–1128.

    Google Scholar 

  • Altman, J. (1963). Differences in the utilization of tritiated leucine by single neurones in normal and exercised rats: An autoradiographic investigation with microdensitometry.Nature 199: 777–780.

    Google Scholar 

  • Altman, J., and Das, G. D. (1964). Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult brain.Nature 204: 1161–1163.

    Google Scholar 

  • Altman, J., and Das, G. D. (1966a). Behavioral manipulations and protein metabolism of the brain: Effects of motor exercise on the utilization of leucine-H3.Physiol. Behav. 1: 105–108.

    Google Scholar 

  • Altman, J., and Das, G. D. (1966b). Autoradiographic and histological studies of postnatal neurogenesis: I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats with special reference to postnatal neurogenesis in some brain regions.J. Comp. Neurol. 126: 337–390.

    Google Scholar 

  • Altman, J., Das, G. D., and Chang, J. (1966). Behavioral manipulations and protein metabolism of the brain: Effects of visual training on the utilization of leucine-H3.Physiol. Behav. 1: 111–115.

    Google Scholar 

  • Andry, D. K., and Luttges, M. W. (1972). Memory traces: Experimental separation by cycloheximide and electroconvulsive shock.Science 178: 518–520.

    Google Scholar 

  • Appel, S. H. (1965). Effect of inhibition of RNA synthesis on neural information storage.Nature 207: 1163–1166.

    Google Scholar 

  • Appel, S. H., Davis, W., and Scott, S. (1967). Brain polysomes: Response to environmental stimulation.Science 157: 836–838.

    Google Scholar 

  • Barondes, S. H. (1970a). Cerebral protein synthesis inhibitors block long-term memory.Internat. Rev. Neurobiol. 12: 177–205.

    Google Scholar 

  • Barondes, S. H., (1970b). Is the amnesic effect of cycloheximide due to specific interference with a process in memory storage? In Lajtha, A. (ed.),Protein Metabolism of the Nervous System, Plenum Press, New York, pp. 545–553.

    Google Scholar 

  • Barondes, S. H., and Cohen, H. D. (1966). Puromycin effect on successive phases of memory storage.Science 151: 594–595.

    Google Scholar 

  • Barondes, S. H., and Cohen, H. D. (1967a). Comparative effects of cycloheximide and puromycin on cerebral protein synthesis and consolidation of memory in mice.Brain Res. 4: 44–51.

    Google Scholar 

  • Barondes, S. H., and Cohen, H. D. (1967b). Delayed and sustained effect of acetoxycycloheximide on memory in mice.Proc. Natl. Acad. Sci. 58: 157–164.

    Google Scholar 

  • Barondes, S. H., and Cohen, H. D. (1968a). Arousal and the conversion of “short-term” to “long-term” memory.Proc. Natl. Acad. Sci. 61: 923–929.

    Google Scholar 

  • Barondes, S. H., and Cohen, H. D. (1968b). Memory impairment after subcutaneous injections of acetoxycycloheximide.Science 160: 556–557.

    Google Scholar 

  • Barondes, S. H., and Jarvik, M. E. (1964). The influence of actinomycin-D on brain RNA synthesis and on memory.J. Neurochem. 11: 187–195.

    Google Scholar 

  • Baskin, F., Masiarz, F. R., and Agranoff, B. W. (1972). Effect of various stresses on the incorporatin of [3H] orotic acid into goldfish brain RNA.Brain Res. 39: 151–162.

    Google Scholar 

  • Bateson, P. P. G., Horn, G., and Rose, S. P. R. (1969). Effects of an imprinting procedure on regional incorporation of tritiated lysine into protein of chick brain.Nature 223: 534–535.

    Google Scholar 

  • Bateson, P. P. G., Horn, G., and Rose, S. P. R. (1972). Effects of early experience on regional incorporation of precursors into RNA and protein in the chick brain.Brain Res. 39: 449–465.

    Google Scholar 

  • Beach, G., Emmens, M., Kimble, D. P., and Lickey, M. (1969). Autoradiographic demonstration of biochemical changes in the limbic system during avoidance training.Proc. Natl. Acad. Sci. 62: 692–696.

    Google Scholar 

  • Bennett, E. L., Diamond, M. C., Krech, D., and Rosenzweig, M. R. (1964). Chemical and anatomical plasticity of the brain.Science 146: 610–619.

    Google Scholar 

  • Bennett, E. L., Rosenzweig, M. R., and Diamond, M. C. (1970). Time course of effects of differential experience on brain measures and behavior of rats. In Byrne, W. L. (ed.),Molecular Approaches to Learning and Memory, Academic Press, New York, pp. 55–89.

    Google Scholar 

  • Berry, R. W. (1969). Ribonucleic acid metabolism of a single neuron: Correlation with electrical activity.Science 166: 1021–1023.

    Google Scholar 

  • Berry, R. W., and Cohen, M. J. (1972). Synaptic stimulation of RNA metabolism in the giant neuron ofAplysia californica.J. Neurobiol. 3: 209–222.

    Google Scholar 

  • Bonnet, K. A. (1973). Biochemical response to unilateral visual discrimination training.J. Neurobiol., in press.

  • Bowman, R. E., and Kottler, P. D. (1970). Regional brain RNA metabolism as a function of different experiences. In Bowman, R. E., and Datta, S. P. (eds.),Biochemistry of Brain and Behavior, Plenum Press, New York, pp. 301–326.

    Google Scholar 

  • Bowman, R. E., and Strobel, D. A. (1969). Brain RNA metabolism in the rat during learning.J. Comp. Physiol. Psychol. 67: 448–458.

    Google Scholar 

  • Briggs, M. H., and Kitto, G. B. (1962). The molecular basis of memory and learning.Psychol. Rev. 69: 537–541.

    Google Scholar 

  • Brink, J. J., Davis, R. E., and Agranoff, B. W. (1966). Effects of puromycin, acetoxycycloheximide and actinomycin-D on protein synthesis in goldfish brain.J. Neurochem. 13: 889–896.

    Google Scholar 

  • Britten, R. J., and Davidson, E. H. (1969). Gene regulation for higher cells: A theory.Science 165: 349–356.

    Google Scholar 

  • Brown, I. R., and Church, R. B. (1971). RNA transcription from nonrepetitive DNA in the mouse.Biochem. Biophys. Res. Commun. 42: 850–856.

    Google Scholar 

  • Calissano, P., Moore, B. W., and Friesen, A. (1969). Effect of calcium ion on S-100, a protein of the nervous system.Biochemistry 8: 4318–4326.

    Google Scholar 

  • Chamberlain, T. J., Halik, P., and Gerard, R. W. (1963a). Fixation of experience in the rat spinal cord.J. Neurophysiol. 26: 662–673.

    Google Scholar 

  • Chamberlain, T. J., Rothschild, G. H., and Gerard, R. W. (1963b). Drugs affecting RNA and learning.Proc. Natl. Acad. Sci. 49: 918–924.

    Google Scholar 

  • Cohen, H. D., and Barondes, S. H. (1966). Further studies of learning and memory after intracerebral actinomycin-D.J. Neurochem. 13: 207–211.

    Google Scholar 

  • Cohen, H. D., and Barondes, S. H. (1967). Puromycin effect on memory may be due to occult seizures.Science 157: 333–334.

    Google Scholar 

  • Cohen, H. D., and Barondes S. H., (1968a). Cycloheximide impairs memory of an appetitive task.Commun. Behav. Biol. 1: 337–340.

    Google Scholar 

  • Cohen, H. D., and Barondes, S. H. (1968b) Effect of acetoxycycloheximide on learning and memory of a light-dark discrimination.Nature 218: 271–273.

    Google Scholar 

  • Cohen, H. D., Ervin, F., and Barondes, S. H. (1966). Puromycin and cycloheximide: Different effects on hippocampal electrical activity.Science 154: 1557–1558.

    Google Scholar 

  • Coleman, M. S., Pfingst, B., Wilson, J. E., and Glassman, E. (1971a). Brain function and macromolecules: VIII. Uridine incorporation into brain polysomes of hypophysectomized rats and ovariectomized mice during avoidance conditioning.Brain Res. 26: 349–360.

    Google Scholar 

  • Coleman, M. S., Wilson, J. E., and Glassman, E. (1971b). Brain function and macromolecules: VII. Uridine incorporation into polysomes of mouse brain during extinction.Nature 229: 54–55.

    Google Scholar 

  • Creaser, E. H. (1956). The assimilation of amino acids by bacteria. The effect of 8-azaguanine upon enzyme formation inStaphylococcus aureus.Biochem. J. 64: 539–545.

    Google Scholar 

  • Daniels, D. (1971a). Acquisition, storage and recall of memory for brightness discrimination by rats following intracerebral fusion of acetoxycycloheximide.J. Comp. Physiol. Psychol. 76: 110–118.

    Google Scholar 

  • Daniels, D. (1971b). Effects of actinomycin-D on memory and brain RNA synthesis in an appetitive learning task.Nature 231: 359–395.

    Google Scholar 

  • Das, G. D., and Altman, J. (1966). Behavioral manipulations and protein metabolism of the brain. Effects of restricted and enriched environments on the utilization of leucine-H3.Physiol. Behav. 1: 109–110.

    Google Scholar 

  • Davis, R. E. (1968). Environmental control of memory fixation in the goldfish.J. Comp. Physiol. Psychol. 65: 72–78.

    Google Scholar 

  • Davis, R. E., and Agranoff, B. W. (1966). Stages of memory formation in goldfish: Evidence for an environmental trigger.Proc. Natl. Acad. Sci. 55: 555–559.

    Google Scholar 

  • Davis, R. E., and Klinger, P. D. (1969). Environmental control of amnesic effects of various agents in goldfish.Physiol. Behav. 4: 269–271.

    Google Scholar 

  • Davis, R. E., Bright, P. J., and Agranoff, B. W. (1965). Effect of ECS and puromycin on memory in fish.J. Comp. Physiol. Psychol. 60: 162–166.

    Google Scholar 

  • Dellweg, H., Gerner, R., and Wacker, A. (1968). Quantitative and qualitative changes in ribonucleic acids of rat brain dependent on age and training experiments.J. Neurochem. 15: 1109–1119.

    Google Scholar 

  • Diamond, M. C. (1967). Extensive cortical depth measurements and neuronal size increases in the cortex of environmentally enriched rats.J. Comp. Neurol. 131: 357–364.

    Google Scholar 

  • Diamond, M. C., Krech, D., and Rosenzweig, M. R. (1964). The effects of an enriched environment on the histology of the rat cerebral cortex.J. Comp. Neurol. 123: 111–120.

    Google Scholar 

  • Diamond, M. C., Law, F., Rhodes H., Lindner, B., Rosenzweig, M. R., Krech, D., and Bennett, E. L. (1966). Increases in cortical depth and glial numbers in rats subjected to enriched environment.J. Comp. Neurol. 128: 117–125.

    Google Scholar 

  • Diamond, M. C., Rosenzweig, M. R., Bennett, E. L., Lindner, B., and Lyon, L. (1972). Effects of environmental enrichment and impoverishment on rat cerebral cortex.J. Neurobiol. 3: 47–64.

    Google Scholar 

  • Dingman, W., and Sporn, M. B. (1961). The incorporation of 8-azaguanine into rat brain RNA and its effect on maze learning by the rat.J. Psychiat. Res. 1: 1–11.

    Google Scholar 

  • Elias, M. F., and Eleftheriou, B. E. (1972). Reversal learning and RNA labeling in neurological mutant mice and normal littermates.Physiol. Behav. 9: 27–34.

    Google Scholar 

  • Flexner, J. B., and Flexner, L. B. (1967). Restoration of expression of memory loss after treatment with puromycin.Proc. Natl. Acad. Sci. 67: 1651–1654.

    Google Scholar 

  • Flexner, J. B., and Flexner, L. B. (1969). Studies on memory: Evidence for a widespread memory trace in the neocortex after the suppression of recent memory by puromycin.Proc. Natl. Acad. Sci. 62: 729–732.

    Google Scholar 

  • Flexner, J. B., and Flexner, L. B. (1970a). Adrenalectomy and the suppression of memory by puromycin.Proc. Natl. Acad. Sci. 66: 48–52.

    Google Scholar 

  • Flexner, J. B., and Flexner, L. B. (1970b). Further observations on restoration of memory lost after treatment with puromycin.Yale J. Biol. Med. 42: 235–240.

    Google Scholar 

  • Flexner, J. B. and Flexner, L. B. (1971). Pituitary peptides and the suppression of memory by puromycin.Proc. Natl. Acad. Sci. 68: 2519–2521.

    Google Scholar 

  • Flexner, J. B., Flexner, L. B., Stellar, E., de la Haba, G., and Roberts, R. B. (1962). Inhibition of protein synthesis in brain and learning and memory following puromycin.J. Neurochem. 9: 595–605.

    Google Scholar 

  • Flexner, J. B., Flexner, L. B., and Stellar, E. (1963). Memory in mice as affected by intracerebral puromycin.Science 141: 57–59.

    Google Scholar 

  • Flexner, L. B., and Flexner, J. B. (1966). Effect of acetoxycycloheximide and of an acetoxycycloheximide-puromycin mixture on cerebral protein synthesis and memory in mice.Proc. Natl. Acad. Sci. 55: 369–374.

    Google Scholar 

  • Flexner, L. B., and Flexner, J. B. (1968a). Intracerebral saline: Effect on memory of trained mice treated with puromycin.Science 159: 330–331.

    Google Scholar 

  • Flexner, L. B., and Flexner, J. B. (1968b). Studies on memory: The long survival of peptidyl-puromycin in mouse brain.Proc. Natl. Acad. Sci. 60: 923–927.

    Google Scholar 

  • Flexner, L. B., Flexner, J. B., de la Haba, G., and Roberts, R. B. (1965). Loss of memory as related to inhibition of cerebral protein synthesis.J. Neurochem. 12: 505–541.

    Google Scholar 

  • Flexner, L. B., Flexner, J. B., and Roberts, R. B. (1967). Memory in mice analyzed with antibiotics.Science 155: 1377–1383.

    Google Scholar 

  • Flexner, L. B., Gambetti, P., Flexner, J. B., and Roberts, R. B. (1971). Studies on memory: Disruption of peptidyl-puromycin in subcellular fractions of mouse brain.Proc. Natl. Acad. Sci. 68: 26–28.

    Google Scholar 

  • Flexner, L. B., Serota, R. G., and Goodman, R. H. (1973). Cycloheximide and acetoxycycloheximide: Inhibition of tyrosine hydroxylase activity and amnesic effects.Proc. Natl. Acad. Sci. 70: 354–356.

    Google Scholar 

  • Flood, J. F., Rosenzweig, M. R., Bennett, E. L., and Orme, A. E., (1972). Influence of training strength on amnesia induced by pretraining injections of cycloheximide.Physiol. Behav. 9: 589–600.

    Google Scholar 

  • Gaito, J. (1963). DNA and RNA as memory molecules.Psychol. Rev. 70: 471–480.

    Google Scholar 

  • Gaito, J. and Bonnet, K. (1971). Quantitative versus qualitative RNA and protein changes in the brain during behavior.Psychol. Bull. 75: 109–127.

    Google Scholar 

  • Gambetti, P., Gonatas, N.K., and Flexner, L. B. (1968a). Puromycin: Action on neuronal mitochondria.Science 161: 900–902.

    Google Scholar 

  • Gambetti, P., Gonatas, N. K., and Flexner, L. B. (1968b). The fine structure of puromycin-induced changes in mouse entorhinal cortex.J. Cell Biol. 36: 379–390.

    Google Scholar 

  • Gambetti, P., Hirt, L., Stieber, A., and Shafer, B. (1972). Distribution of puromycin peptides in mouse entorhinal cortex.Exptl. Neurol. 34: 223–228.

    Google Scholar 

  • Gartside, I. B. (1971). Is the inhibition by cycloheximide of induced long-term changes in cortical activity due to inhibition of protein synthesis?Nature 232: 47–48.

    Google Scholar 

  • Geller, A., Robustelli, F., Barondes, S. H., Cohen, H. D., and Jarvik, M. E. (1969). Impaired performance by post-trial injections of cycloheximide in a passive avoidance task.Psychopharmacologia 14: 371–376.

    Google Scholar 

  • Geller, A., Robustelli, F. and Jarvik, M. E. (1970). A parallel study of the amnesic effects of cycloheximide and ECS under different strengths of conditioning.Psychopharmacologia 16: 281–289.

    Google Scholar 

  • Glassman, E. (1969). The biochemistry of learning: An evaluation of the role of RNA and protein.Ann. Rev. Biochem. 38: 605–646.

    Google Scholar 

  • Gold, M., Altschuler, H., Keblan, M. H., Lawton, M. P., and Miller, M. (1969). Chemical changes in the rat brain following escape training.Psychon. Sci. 17: 37–38.

    Google Scholar 

  • Goldsmith, L. J. (1967). Effect of intracerebral actinomycin-D and of ECS on passive avoidance.J. Comp. Physiol. Psychol. 63: 126–132.

    Google Scholar 

  • Grouse, L., Chilton, M. D., and McCarthy, B. J. (1972). Hybridization of ribonucleic acid with unique sequences of mouse deoxyribonucleic acid.Biochemistry 11: 798–805.

    Google Scholar 

  • Gurowitz, E. M. (1969).The Molecular Basis of Memory. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Hahn, W. E., and Laird, C. D. (1971). Transcription of nonrepeated DNA in mouse brain.Science 173: 158–161.

    Google Scholar 

  • Haljamae, H. H., and Lange, P. W. (1972). Calcium content and conformational changes of S100 protein in the hippocampus during training.Brain Res. 38: 131–142.

    Google Scholar 

  • Holloway, R. L., Jr. (1966). Dendritic branching: Some preliminary results of training and complexity in rat visual cortex.Brain Res. 2: 393–396.

    Google Scholar 

  • Huber, H., and Longo, N. (1970). The effect of puromycin on classical conditioning in the goldfish.Psychon. Sci. 18: 279–280.

    Google Scholar 

  • Hydén, H. (1962). The neuron and its glia—A biochemical and functional unit.Endeavour 21: 144–155.

    Google Scholar 

  • Hydén, H. (1970). The question of a molecular basis for the memory trace. In Pribram, K. H., and Broadbent, D. E. (eds.),Biology of Memory, Academic Press, New York, pp. 101–119.

    Google Scholar 

  • Hydén, H., and Egyházi, E. (1962). Nuclear RNA changes of nerve cells during a learning experiment in rats.Proc. Natl. Acad. Sci. 48: 1366–1373.

    Google Scholar 

  • Hydén, H., and Egyházi, E. (1963). Glial RNA changes during a learning experiment with rats.Proc. Natl. Acad. Sci. 49: 618–624.

    Google Scholar 

  • Hydén, H., and Egyházi, E. (1964). Changes in RNA content and base composition in cortical neurons of rats in a learning experiment involving transfer of handedness.Proc. Natl. Acad. Sci. 52: 1030–1035.

    Google Scholar 

  • Hydén, H., and Lange, P. W. (1965). A differentiation in RNA response in neurons early and late during learning.Proc. Natl. Acad. Sci. 53: 946–952.

    Google Scholar 

  • Hydén, H., and Lange, P. W. (1968). Protein synthesis in the hippocampal pyramidal cells of rats during a behavioral test.Science 159: 1370–1373.

    Google Scholar 

  • Hydén, H., and Lange, P. W. (1970a). Brain-cell protein synthesis specifically related to learning.Proc. Natl. Acad. Sci. 65: 898–904.

    Google Scholar 

  • Hydén, H., and Lange, P. W. (1970b). Correlation of the S100 brain protein with behavior. In Bowman, R. E., and Datta, S. P. (eds.),Biochemistry of Brain and Behavior, Plenum Press, New York, pp. 328–346.

    Google Scholar 

  • Hydén, H., and Lange, P. W. (1970c). Protein synthesis in limbic structures during changes in behavior.Brain Res. 22: 423–425.

    Google Scholar 

  • Hydén, H., and Lange, P. W. (1970d). S100 brain protein: Correlation with behavior.Proc. Natl. Acad. Sci. 67: 1959–1966.

    Google Scholar 

  • Hydén, H., and Lange, P. W. (1971). Do specific biochemical correlates to learning processes exist in brain cells? In Adam, G. (ed.),Biology of Memory, Plenum Press, New York, pp. 69–84.

    Google Scholar 

  • Hydén, H., and Lange, P. W. (1972a). Protein changes in different brain areas as a function of intermittent training.Proc. Natl. Acad. Sci. 69: 1980–1984.

    Google Scholar 

  • Hydén, H., and Lange, P. W. (1972b). Protein synthesis in hippocampal nerve cells during re-reversal of handedness in rats.Brain Res. 45: 314–317.

    Google Scholar 

  • Hydén, H., and McEwen, B. (1966). A glial protein specific for the nervous system.Proc. Natl. Acad. Sci. 55: 354–358.

    Google Scholar 

  • Jewett, R. E., Pirch, J. H., and Norton, S. (1965). Effect of 8-azaguanine on learning of a fixed-interval schedule.Nature 207: 277–278.

    Google Scholar 

  • John, E. R. (1961). Higher nervous functions: Brain functions and learning.Ann. Rev. Physiol. 23: 451–484.

    Google Scholar 

  • John, E. R. (1967).Mechanisms of Memory, Academic Press, New York.

    Google Scholar 

  • Kahan, B., Krigman, M. R., Wilson, J. E., and Glassman, E. (1970). Brain function and macromolecules: VI. Autoradiographic analysis of the effects of a brief training experience on the incorporation of uridine into mouse brain.Proc. Natl. Acad. Sci. 65: 300–303.

    Google Scholar 

  • Kottler, P. D., Bowman, R. E., and Haasch, W. D. (1972). RNA metabolism in the rat brain during learning following intravenous and intraventricular injections of3H-cytidine.Physiol. Behav. 8: 291–297.

    Google Scholar 

  • Katz, J. J., and Halstead, W. G. (1950). Protein organization and mental functions.Comp. Psychol. Monogr. 20: 1–38.

    Google Scholar 

  • Keblan, M. H., Gold, M., Altschuler, H., Lawton, M. P., and Miller, M. (1971). Neurochemical changes in brains of albino rats resulting from avoidance learning.Psychol. Rep. 28: 3–13.

    Google Scholar 

  • Kimble, D. P., and Kimble, R. J. (1965). Hippocampectomy and response perseveration in the rat.J. Comp. Physiol. Psychol. 60: 474–476.

    Google Scholar 

  • Kimble, D. P., and Pribram, K. H. (1963). Hippocampectomy and behavior sequences.Science 139: 824–825.

    Google Scholar 

  • Kottler, P. D., Bowman, R. E., and Haasch, W. D. (1972). RNA metabolism in the rat brain during learning following intraveneous and intraventricular injections of3H-cytidine.Physiol. Behav. 8: 291–297.

    Google Scholar 

  • Ladik, J., and Greguss, P. (1971). Possible molecular mechanisms of information storage in the long-term memory. In Adam, G. (ed.),Biology of Memory, Plenum Press, New York, pp. 343–353.

    Google Scholar 

  • Landauer, T. K. (1964). Two hypotheses concerning the biochemical basis of memory.Psychol. Rev. 71: 167–179.

    Google Scholar 

  • Lashley, K. S. (1950). In search of the engram.Symp. Soc. Exptl. Biol. 4: 454–482.

    Google Scholar 

  • LaTorre, J. C. (1968). Effect of differential environmental enrichment on brain weight and on acetylcholinesterase and cholinesterase activity in mice.Exptl. Neurol. 22: 493–503.

    Google Scholar 

  • Levitan, I. B., Mushynski, W. E., and Ramirez, G. (1972). Effects of an enriched environment on amino acid incorporation into rat brain subcellular fractionsin vivo.Brain Res. 41: 498–502.

    Google Scholar 

  • Lim, R., Brink, J. J., and Agranoff, B. W. (1970). Further studies on the effects of blocking agents on protein synthesis in goldfish brain.J. Neurochem. 17: 1637–1647.

    Google Scholar 

  • Luttges, M. W., Andry, D. K., and MacInnes, J. W. (1972). Cycloheximide alters the neural and behavioral responses of mice to electroconvulsive shock.Brain Res. 46: 411–416.

    Google Scholar 

  • Machlus, B., and Gaito, J. (1968a). Detection of RNA species unique to a behavioral task.Psychon. Sci. 10: 253–254.

    Google Scholar 

  • Machlus, B., and Gaito, J. (1968b). Unique RNA species developed during a shock avoidance task.Psychon. Sci. 12: 111–112.

    Google Scholar 

  • MacInnes, J. W. (1973). Mammalian brain ribosomes are behaviorally and structurally heterogeneous.Nature New Biol. 241: 244–246.

    Google Scholar 

  • MacInnes, J. W., and Luttges, M. W. (1972). Interaction of puromycin and cycloheximide with electroconvulsive shock in producing alterations of brain polyribosomes.J. Neurochem. 19: 2889–2892.

    Google Scholar 

  • McEwen, B. S., and Hydén, H. (1966). A study of specific brain protein on a semi-micro scale.J. Neurochem. 13: 823–833.

    Google Scholar 

  • Møllgaard, K., Diamond, M. C., Bennett, E. L., Rosenzweig, M. R., and Lindner, B. (1971). Quantitative synaptic changes with differential experience in rat brain.Internat. J. Neurosci. 2: 113–128.

    Google Scholar 

  • Moore, B. W., and Perez, V. J. (1968). Specific acidic proteins of the nervous system. In Carlson, F. D. (ed.),Physiological and Biochemical Aspects of Nervous Integration, Prentice-Hall, Englewood Cliffs, N. J., pp. 343–359.

    Google Scholar 

  • Nakajima, S. (1969). Interference with relearning in the rat after hippocampal injection of actinomyin-D.J. Comp. Physiol. Psychol. 67: 457–461.

    Google Scholar 

  • Nakajima, S. (1972). Proactive effect of actinomycin-D on maze performance in the rat.Physiol. Behav. 8: 1063–1067.

    Google Scholar 

  • Nathans, D. (1965). Puromycin inhibition of protein synthesis: Incorporation of puromycin into peptide chains.Proc. Natl. Acad. Sci. 51: 585–592.

    Google Scholar 

  • Penfield, W., and Milner, B. (1958). Memory deficit produced by bilateral lesions in the hippocampal zone.AMA Arch. Neurol. Psychiat. 79: 475–497.

    Google Scholar 

  • Penman, S., Rosbach, M., and Penman, M. (1970). Messenger and heterogeneous nuclear RNA in HeLa cells: Differential inhibition by cordycepin.Proc. Natl. Acad. Sci. 67: 1878–1885.

    Google Scholar 

  • Pohle, W., and Matthies, H. (1971). The incorporation of3H-uridine monophosphate into the rat brain during the training period: A microautoradiographic study.Brain Res. 29: 123–127.

    Google Scholar 

  • Quartermain, D., McEwen, B. S., and Azmitia, E. C., Jr., (1970). Amnesia produced by electroconvulsive shock or cycloheximide: Conditions for recovery.Science 169: 683–686.

    Google Scholar 

  • Quinton, E. E. (1971). The cycloheximide-induced amnesia gradient of a passive avoidance task.Psychon. Sci. 25: 295–296.

    Google Scholar 

  • Randt, C. T., Barnett, B. M., McEwen, B. S., and Quartermain, D. (1971). Amnesic effects of cycloheximide on two strains of mice with different memory characteristics.Exptl. Neurol. 30: 467–474.

    Google Scholar 

  • Rappoport, D. A., and Daginawala, H. F. (1970). Changes in RNA and protein induced by stimulation. In Lajtha, A. (ed.),Protein Metabolism of the Nervous System, Plenum Press, New York, pp. 459–489.

    Google Scholar 

  • Reich, E., Franklin, R. M., Shutkin, A. J., and Tatum, E. L. (1962). Action of actinomycin-D on animal cells and viruses.Proc. Natl. Acad. Sci. 48: 1238–1245.

    Google Scholar 

  • Roberts, R. B., Flexner, J. B., and Flexner, L. B. (1970). Some evidence for the involvement of adrenergic sites in the memory trace.Proc. Natl. Acad. Sci. 66: 310–313.

    Google Scholar 

  • Robustelli, F., Geller, A., and Jarvik, M. E. (1968). Delay of punishment in passive avoidance conditioning.Percept. Motor Skills 27: 553–554.

    Google Scholar 

  • Rosenzweig, M. R. (1966). Environmental complexity, cerebral changes and behavior.Am. Psychologist 21: 321–332.

    Google Scholar 

  • Rosenzweig, M. R., and Bennett, E. L. (1972). Cerebral changes in rats exposed individually to an enriched environment.J. Comp. Physiol. Psychol. 80: 304–313.

    Google Scholar 

  • Rosenzweig, M. R., Love, W., and Bennett, E. L. (1968). Effects of a few hours a day of enriched experience on brain chemistry and brain weights.Physiol. Behav. 3: 819–825.

    Google Scholar 

  • Rosenzweig, M. R., Bennett, E. L., and Diamond, M. C. (1972). Cerebral effects of differential experience in hypophysectomized rats.J. Comp. Physiol. Psychol. 79: 56–66.

    Google Scholar 

  • Schluederberg, A., Hendel, R. C., and Chavanich, S. (1971). Actinomycin-D: Renewed RNA synthesis after removal from mammalian cells.Science 172: 577–579.

    Google Scholar 

  • Segal, D. S., Squire, L. R., and Barondes, S. H. (1971). Cycloheximide: Its effects on activity are dissociable from its effects on memory.Science 172: 82–84.

    Google Scholar 

  • Segal, M., Disterhoft, J. F., and Olds, J. (1972). Hippocampal unit activity during classical aversive and appetitive conditioning.Science 175: 792–794.

    Google Scholar 

  • Serota, R. G., Roberts, R. B., and Flexner, L. B. (1972). Acetoxycycloheximide-induced transient amnesia: Protective effects of adrenergic stimulants.Proc. Natl. Acad. Sci. 69: 340–342.

    Google Scholar 

  • Shapiro, M. M., Gel, A., and Kellaway, P. (1965). Acquisition, retention, and discrimination reversal after hippocampal ablation in monkeys.Exptl. Neurol. 13: 128–144.

    Google Scholar 

  • Shashoua, V. E. (1968). RNA changes in goldfish during learning.Nature 217: 238–240.

    Google Scholar 

  • Shashoua, V. E. (1970). RNA metabolism in goldfish brain during acquisition of new behavioral patterns.Proc. Natl. Acad. Sci. 65: 160–167.

    Google Scholar 

  • Siegel, M. R., and Sisler, H. D. (1963). Inhibition of protein synthesisin vitro by cycloheximide.Nature 200: 675–676.

    Google Scholar 

  • Spelsberg, T. C., Widhelm, J. A., and Hnilica, L. S. (1972). Nuclear proteins in genetic restriction. II. The nonhistone proteins in chromatin.Subjects Cell. Biol. 1: 107–145.

    Google Scholar 

  • Squire, L. R., and Barondes, S. H. (1970). Actinomycin-D: Effects on memory at different times after training.Nature 225: 649–650.

    Google Scholar 

  • Squire, L. R., and Barondes, S. H. (1972). Variable decay of memory and its recovery in cycloheximide-treated mice.Proc. Natl. Acad. Sci. 69: 1416–1420.

    Google Scholar 

  • Squire, L. R., Geller, A., and Jarvik, M. E. (1970). Habituation and activity as affected by cycloheximide.Commun. Behav. Biol. 5: 249–254.

    Google Scholar 

  • Squire, L. R., Smith, G. A., and Barondes, S. H. (1973). Cycloheximide affects memory within minutes after the onset of training.Nature 242: 201–202.

    Google Scholar 

  • Talwar, G. P., Chopra, S. P., Goel, B. K., and Monte, B. D. (1966). Correlation of the functional activity of the brain with metabolic parameters: III. Protein metabolism of the occipital cortex in relation to light stimulus.J. Neurochem. 13: 109–116.

    Google Scholar 

  • Teitelbaum, H., and McFarland, W. L. (1971). Power spectral shifts in hippocampal EEG associated with conditioned locomotion in the rat.Physiol. Behav. 7: 545–549.

    Google Scholar 

  • Thompson, R. (1969). Localization of the “visual memory system” in the white rat.J. Comp. Physiol. Psychol. Monogr. 69: 1–29.

    Google Scholar 

  • Thompson, R. F. (1967).Foundations of Physiological Psychology Harper and Row, New York.

    Google Scholar 

  • Trakatellis, A. C., Montjar, M., and Axelrod, A. E. (1965). Effect of cycloheximide on polysomes and protein synthesis in the mouse liver.Biochemistry 4: 2065–2071.

    Google Scholar 

  • Uphouse, L., MacInnes, J. W., and Schlesinger, K. (1972a). Effects of conditioned avoidance training on polyribosomes of mouse brain.Physiol. Behav. 8: 1013–1018.

    Google Scholar 

  • Uphouse, L., MacInnes, J. W., and Schlesinger, K. (1972b). Uridine incorporation into polyribosomes of mouse brain after escape training in an electrified T-maze.Physiol. Behav. 8: 1019–1023.

    Google Scholar 

  • Uphouse, L., MacInnes, J. W., and Schlesinger, K. (1972c). Effects of conditioned avoidance training on the incorporation of uridine into polyribosomes of parts of mouse brain.Physiol. Behav. 9: 315–318.

    Google Scholar 

  • Volkmar, F. R., and Greenough, W. T. (1972). Rearing complexity affects branching of dendrites in the visual cortex of the rat.Science 176: 1445–1446.

    Google Scholar 

  • von Hungen, K. (1971). Competitive hybridization with brain RNA fails to confirm new RNA induced by learning.Nature 229: 114–115.

    Google Scholar 

  • Walsh, R. M., Butz-Olsen, O. E., Penny, J. E., and Cummins, R. A. (1970). The effects of environmental complexity on the histology of the rat hippocampus.J. Comp. Neurol. 137: 361–366.

    Google Scholar 

  • Warburton, D. M., and Russell, R. W. (1961). Effects of 8-azaguanine on acquisition of a temporal discrimination.Physiol. Behav. 3: 61–63.

    Google Scholar 

  • West, R. W., and Greenough, W. T. (1972). Effect of environmental complexity on cortical synapses of rats: Preliminary results.Behav. Biol. 7: 279–284.

    Google Scholar 

  • Wilson, D. L., and Berry, R. W. (1972). The effect of synaptic stimulation on RNA and protein metabolism in the R2 soma ofAplysia.J. Neurobiol. 3: 369–379.

    Google Scholar 

  • Wimer, R. E., Symington, L., Farmer, H., and Schwartzkroin, P. (1968). Differences in memory processes between inbred mouse strains C57BL/6J and DBA/2J.J. Comp. Physiol. Psychol. 65: 126–131.

    Google Scholar 

  • Yanagihari, T., and Hydén, H. (1971). Protein synthesis in various regions of rat hippocampus during learning.Expertl. Neurol. 31: 151–164.

    Google Scholar 

  • Zemp, J. W., Wilson, J. E., Schlesinger, K., Boggan, W. O., and Glassman, E. (1966). Brain function and macromolecules: I. Incorporation of uridine into RNA of mouse brain during short-term training experience.Proc. Natl. Acad. Sci. 55: 1423–1431.

    Google Scholar 

  • Zemp, J. W., Wilson, J. E., and Glassman, E. (1967). Brain function and macromolecules: II. Site of increased labeling of RNA in brains of mice during a short-term training experience.Proc. Natl. Acad. Sci. 58: 1120–1125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by U.S. Public Health Service grants MH-11167, MH-13026, and NS-09131. L. L. U. was supported in part by NICHD postdoctoral fellowship 1F02-HD52521-01.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uphouse, L.L., MacInnes, J.W. & Schlesinger, K. Role of RNA and protein in memory storage: A review. Behav Genet 4, 29–81 (1974). https://doi.org/10.1007/BF01066705

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01066705

Key Words

Navigation